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Abstract

This paper presents a general mean-field game (GMFG) framework for simultane-
ous learning and decision-making in stochastic games with a large population. It
first establishes the existence of a unique Nash Equilibrium to this GMFG, and ex-
plains that naively combining Q-learning with the fixed-point approach in classical
MFGs yields unstable algorithms. It then proposes a Q-learning algorithm with
Boltzmann policy (GMF-Q), with analysis of convergence property and computa-
tional complexity. The experiments on repeated Ad auction problems demonstrate
that this GMF-Q algorithm is efficient and robust in terms of convergence and
learning accuracy. Moreover, its performance is superior in convergence, stabil-
ity, and learning ability, when compared with existing algorithms for multi-agent
reinforcement learning.

1 Introduction

Motivating example. This paper is motivated by the following Ad auction problem for an advertiser.
An Ad auction is a stochastic game on an Ad exchange platform among a large number of players, the
advertisers. In between the time a web user requests a page and the time the page is displayed, usually
within a millisecond, a Vickrey-type of second-best-price auction is run to incentivize interested
advertisers to bid for an Ad slot to display advertisement. Each advertiser has limited information
before each bid: first, her own valuation for a slot depends on an unknown conversion of clicks for
the item; secondly, she, should she win the bid, only knows the reward after the user’s activities on
the website are finished. In addition, she has a budget constraint in this repeated auction.

The question is, how should she bid in this online sequential repeated game when there is a large
population of bidders competing on the Ad platform, with unknown distributions of the conversion of
clicks and rewards?

Besides the Ad auction, there are many real-world problems involving a large number of players
and unknown systems. Examples include massive multi-player online role-playing games [19], high
frequency tradings [24], and the sharing economy [13].

Our work. Motivated by these problems, we consider a general framework of simultaneous learning
and decision-making in stochastic games with a large population. We formulate a general mean-field-
game (GMFG) with incorporation of action distributions, (randomized) relaxed policies, and with
unknown rewards and dynamics. This general framework can also be viewed as a generalized version
of MFGs of McKean-Vlasov type [1], which is a different paradigm from the classical MFG. It is
also beyond the scope of the existing Q-learning framework for Markov decision problem (MDP)
with unknown distributions, as MDP is technically equivalent to a single player stochastic game.
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On the theory front, this general framework differs from all existing MFGs. We establish under
appropriate technical conditions, the existence and uniqueness of the Nash equilibrium (NE) to this
GMFG. On the computational front, we show that naively combining Q-learning with the three-step
fixed-point approach in classical MFGs yields unstable algorithms. We then propose a Q-learning
algorithm with Boltzmann policy (GMF-Q), establish its convergence property and analyze its
computational complexity. Finally, we apply this GMF-Q algorithm to the Ad auction problem,
where this GMF-Q algorithm demonstrates its efficiency and robustness in terms of convergence
and learning. Moreover, its performance is superior, when compared with existing algorithms for
multi-agent reinforcement learning for convergence, stability, and learning accuracy.

Related works. On learning large population games with mean-field approximations, [39] focuses
on inverse reinforcement learning for MFGs without decision making, [40] studies an MARL problem
with a first-order mean-field approximation term modeling the interaction between one player and all
the other finite players, and [22] and [41] consider model-based adaptive learning for MFGs in specific
models (e.g., linear-quadratic and oscillator games). More recently, [26] studies the local convergence
of actor-critic algorithms on finite time horizon MFGs, and [34] proposes a policy-gradient based
algorithm and analyzes the so-called local NE for reinforcement learning in infinite time horizon
MFGs. For learning large population games without mean-field approximation, see [14, 21] and
the references therein. In the specific topic of learning auctions with a large number of advertisers,
[6] and [20] explore reinforcement learning techniques to search for social optimal solutions with
real-word data, and [18] uses MFGs to model the auction system with unknown conversion of clicks
within a Bayesian framework.

However, none of these works consider the problem of simultaneous learning and decision-making in
a general MFG framework. Neither do they establish the existence and uniqueness of the (global)
NE, nor do they present model-free learning algorithms with complexity analysis and convergence to
the NE. Note that in principle, global results are harder to obtain compared to local results.

2 Framework of General MFG (GMFG)

2.1 Background: classical N -player Markovian game and MFG

Let us first recall the classical N -player game. There are N players in a game. At each step t, the
state of player i (= 1, 2, · · · , N) is sit ∈ S ⊆ Rd and she takes an action ait ∈ A ⊆ Rp. Here d, p
are positive integers, and S and A are compact (for example, finite) state space and action space,
respectively. Given the current state profile of N -players st = (s1t , . . . , s

N
t ) ∈ SN and the action ait,

player i will receive a reward ri(st, ait) and her state will change to sit+1 according to a transition
probability function P i(st, ait).

A Markovian game further restricts the admissible policy/control for player i to be of the form
ait = πit(st). That is, πit : SN → P(A) maps each state profile s ∈ SN to a randomized action,
with P(X ) the space of probability measures on space X . The accumulated reward (a.k.a. the value
function) for player i, given the initial state profile s and the policy profile sequence πππ := {πππt}∞t=0
with πππt = (π1

t , . . . , π
N
t ), is then defined as

V i(s,πππ) := E

[ ∞∑
t=0

γtri(st, a
i
t)
∣∣∣s0 = s

]
, (1)

where γ ∈ (0, 1) is the discount factor, ait ∼ πit(st), and sit+1 ∼ P i(st, ait). The goal of each player
is to maximize her value function over all admissible policy sequences.

In general, this type of stochastic N -player game is notoriously hard to analyze, especially when N
is large [28]. Mean field game (MFG), pioneered by [17] and [23] in the continuous settings and later
developed in [4, 10, 16, 25, 33] for discrete settings, provides an ingenious and tractable aggregation
approach to approximate the otherwise challenging N -player stochastic games. The basic idea for
an MFG goes as follows. Assume all players are identical, indistinguishable and interchangeable,
when N →∞, one can view the limit of other players’ states s−it = (s1t , . . . , s

i−1
t , si+1

t , . . . , sNt ) as

a population state distribution µt with µt(s) := limN→∞

∑N
j=1,j 6=i I

s
j
t=s

N .1 Due to the homogeneity

1Here the indicator function I
s
j
t=s

= 1 if sjt = s and 0 otherwise.
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of the players, one can then focus on a single (representative) player. That is, in an MFG, one may
consider instead the following optimization problem,

maximizeπππ V (s,πππ,µµµ) := E
[ ∞∑
t=0

γtr(st, at, µt)|s0 = s

]
subject to st+1 ∼ P (st, at, µt), at ∼ πt(st, µt),

where πππ := {πt}∞t=0 denotes the policy sequence and µµµ := {µt}∞t=0 the distribution flow. In this
MFG setting, at time t, after the representative player chooses her action at according to some
policy πt, she will receive reward r(st, at, µt) and her state will evolve under a controlled stochastic
dynamics of a mean-field type P (·|st, at, µt). Here the policy πt depends on both the current state st
and the current population state distribution µt such that π : S × P(S)→ P(A).

2.2 General MFG (GMFG)

In the classical MFG setting, the reward and the dynamic for each player are known. They depend
only on st the state of the player, at the action of this particular player, and µt the population state
distribution. In contrast, in the motivating auction example, the reward and the dynamic are unknown;
they rely on the actions of all players, as well as on st and µt.

We therefore define the following general MFG (GMFG) framework. At time t, after the representative
player chooses her action at according to some policy π : S × P(S) → P(A), she will receive a
reward r(st, at,Lt) and her state will evolve according to P (·|st, at,Lt), where r and P are possibly
unknown. The objective of the player is to solve the following control problem:

maximizeπππ V (s,πππ,LLL) := E
[ ∞∑
t=0

γtr(st, at,Lt)|s0 = s

]
subject to st+1 ∼ P (st, at,Lt), at ∼ πt(st, µt).

(GMFG)

Here,LLL := {Lt}∞t=0, with Lt = Pst,at ∈ P(S ×A) the joint distribution of the state and the action
(i.e., the population state-action pair). Lt has marginal distributions αt for the population action and
µt for the population state. Notice that {Lt}∞t=0 could depend on time. Namely, an infinite time
horizon MFG could still have time-dependent NE solution due to the mean information process (game
interaction) in the MFG. This is fundamentally different from the theory of single-agent MDP where
the optimal control, if exists uniquely, would be time independent in an infinite time horizon setting.

In this framework, we adopt the well-known Nash Equilibrium (NE) for analyzing stochastic games.
Definition 2.1 (NE for GMFGs). In (GMFG), a player-population profile (πππ?,LLL?) :=
({π?t }∞t=0, {L?t }∞t=0) is called an NE if

1. (Single player side) FixLLL?, for any policy sequence πππ := {πt}∞t=0 and initial state s ∈ S,

V (s,πππ?,LLL?) ≥ V (s,πππ,LLL?) . (2)

2. (Population side) Pst,at = L?t for all t ≥ 0, where {st, at}∞t=0 is the dynamics under the
policy sequence πππ? starting from s0 ∼ µ?0, with at ∼ π?t (st, µ

?
t ), st+1 ∼ P (·|st, at,L?t ),

and µ?t being the population state marginal of L?t .

The single player side condition captures the optimality of πππ?, when the population side is fixed. The
population side condition ensures the “consistency” of the solution: it guarantees that the state and
action distribution flow of the single player does match the population state and action sequenceLLL?.

2.3 Example: GMFG for the repeated auction

Now, consider the repeated Vickrey auction with a budget constraint in Section 1. Take a representative
advertiser in the auction. Denote st ∈ {0, 1, 2, · · · , smax} as the budget of this player at time t,
where smax ∈ N+ is the maximum budget allowed on the Ad exchange with a unit bidding price.
Denote at as the bid price submitted by this player and αt as the bidding/(action) distribution of the
population. The reward for this advertiser with bid at and budget st is

rt = IwMt =1

[
(vt − aMt )− (1 + ρ)Ist<aMt (aMt − st)

]
. (3)
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Here wMt takes values 1 and 0, with wMt = 1 meaning this player winning the bid and 0 otherwise.
The probability of winning the bid would depend on M , the index for the game intensity, and αt.
(See discussion on M in Appendix H.1.) The conversion of clicks at time t is vt and follows an
unknown distribution. aMt is the value of the second largest bid at time t, taking values from 0 to
smax, and depends on both M and Lt. Should the player win the bid, the reward rt consists of two
parts, corresponding to the two terms in (3). The first term is the profit of wining the auction, as the
winner only needs to pay for the second best bid aMt in a Vickrey auction. The second term is the
penalty of overshooting if the payment exceeds her budget, with a penalty rate ρ. At each time t, the
budget dynamics st follows,

st+1 =

 st, wMt 6= 1,
st − aMt , wMt = 1 and aMt ≤ st,
0, wMt = 1 and aMt > st.

That is, if this player does not win the bid, the budget will remain the same. If she wins and has
enough money to pay, her budget will decrease from st to st−aMt . However, if she wins but does not
have enough money, her budget will be 0 after the payment and there will be a penalty in the reward
function. Note that in this game, both the rewards rt and the dynamics st are unknown a priori.

In practice, one often modifies the dynamics of st+1 with a non-negative random budget fulfillment
∆(st+1) after the auction clearing [11], such that ŝt+1 = st+1 + ∆(st+1). One may see some
particular choices of ∆(st+1) in the experiment section (Section 5).

3 Solution for GMFGs

We now establish the existence and uniqueness of the NE to (GMFG), by generalizing the classical
fixed-point approach for MFGs to this GMFG setting. (See [17] and [23] for the classical case). It
consists of three steps.

Step A. Fix LLL := {Lt}∞t=0, (GMFG) becomes the classical optimization problem. Indeed, with
LLL fixed, the population state distribution sequence µµµ := {µt}∞t=0 is also fixed, hence the space of
admissible policies is reduced to the single-player case. Solving (GMFG) is now reduced to finding a
policy sequence π?t,LLL ∈ Π := {π |π : S → P(A)} over all admissible πππLLL = {πt,LLL}∞t=0, to maximize

V (s,πππLLL,LLL) := E
[ ∞∑
t=0

γtr(st, at,Lt)|s0 = s

]
,

subject to st+1 ∼ P (st, at,Lt), at ∼ πt,LLL(st).

Notice that with LLL fixed, one can safely suppress the dependency on µt in the admissible policies.
Moreover, given this fixedLLL sequence and the solution πππ?LLL := {π?t,LLL}∞t=0, one can define a mapping
from the fixed population distribution sequence LLL to an arbitrarily chosen optimal randomized policy
sequence. That is,

Γ1 : {P(S ×A)}∞t=0 → {Π}∞t=0,

such that πππ?LLL = Γ1(LLL). Note that this πππ?LLL sequence satisfies the single player side condition in
Definition 2.1 for the population state-action pair sequenceLLL. That is, V (s,πππ?LLL,LLL) ≥ V (s,πππ,LLL) ,
for any policy sequence πππ = {πt}∞t=0 and any initial state s ∈ S.

As in the MFG literature [17], a feedback regularity condition is needed for analyzing Step A.

Assumption 1. There exists a constant d1 ≥ 0, such that for anyLLL,LLL′ ∈ {P(S ×A)}∞t=0,

D(Γ1(LLL),Γ1(LLL′)) ≤ d1W1(LLL,LLL′), (4)

where

D(πππ,πππ′) := sup
s∈S
W1(πππ(s),πππ′(s)) = sup

s∈S
sup
t∈N

W1(πt(s), π
′
t(s)),

W1(LLL,LLL′) := sup
t∈N

W1(Lt,L′t),
(5)

and W1 is the `1-Wasserstein distance between probability measures [9, 31, 37].
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Step B. Based on the analysis in Step A and πππ?LLL = {π?t,LLL}∞t=0, update the initial sequenceLLL toLLL′
following the controlled dynamics P (·|st, at,Lt).

Accordingly, for any admissible policy sequence πππ ∈ {Π}∞t=0 and a joint population state-action pair
sequenceLLL ∈ {P(S×A)}∞t=0, define a mapping Γ2 : {Π}∞t=0×{P(S×A)}∞t=0 → {P(S×A)}∞t=0
as follows:

Γ2(πππ,LLL) := L̂̂L̂L = {Pst,at}∞t=0, (6)

where st+1 ∼ µtP (·|·, at,Lt), at ∼ πt(st), s0 ∼ µ0, and µt is the population state marginal of Lt.
One needs a standard assumption in this step.
Assumption 2. There exist constants d2, d3 ≥ 0, such that for any admissible policy sequences
πππ,πππ1,πππ2 and joint distribution sequencesLLL,LLL1,LLL2,

W1(Γ2(πππ1,LLL),Γ2(πππ2,LLL)) ≤ d2D(πππ1,πππ2), (7)

W1(Γ2(πππ,LLL1),Γ2(πππ,LLL2)) ≤ d3W1(LLL1,LLL2). (8)

Assumption 2 can be reduced to Lipschitz continuity and boundedness of the transition dynamics P .
(See the Appendix for more details.)

Step C. Repeat Step A and Step B untilLLL′ matchesLLL.

This step is to take care of the population side condition. To ensure the convergence of the combined
step A and step B, it suffices if Γ : {P(S × A)}∞t=0 → {P(S × A)}∞t=0 is a contractive mapping
under theW1 distance, with Γ(LLL) := Γ2(Γ1(LLL),LLL). Then by the Banach fixed point theorem and
the completeness of the related metric spaces, there exists a unique NE to the GMFG.

In summary, we have
Theorem 1 (Existence and Uniqueness of GMFG solution). Given Assumptions 1 and 2, and
assuming that d1d2 + d3 < 1, there exists a unique NE to (GMFG).

4 RL Algorithms for (stationary) GMFGs

In this section, we design the computational algorithm for the GMFG. Since the reward and transition
distributions are unknown, this is simultaneously learning the system and finding the NE of the game.
We will focus on the case with finite state and action spaces, i.e., |S|, |A| < ∞. We will look for
stationary (time independent) NEs. Accordingly, we abbreviate πππ := {π}∞t=0 and LLL := {L}∞t=0 as
π and L, respectively. This stationarity property enables developing appropriate time-independent
Q-learning algorithm, suitable for an infinite time horizon game. Modification from the GMFG
framework to this special stationary setting is straightforward, and is left to Appendix B. Note that
the assumptions to guarantee the existence and uniqueness of GMFG solutions are slightly different
between the stationary and non-stationary cases. For instance, one can compare (7)-(8) with (21)-(22).

The algorithm consists of two steps, parallel to Step A and Step B in Section 3.

Step 1: Q-learning with stability for fixed L. With L fixed, it becomes a standard learning
problem for an infinite horizon MDP. We will focus on the Q-learning algorithm [35, 32].

The Q-learning algorithm approximates the value iteration by stochastic approximation. At each step
with the state s and an action a, the system reaches state s′ according to the controlled dynamics and
the Q-function is updated according to

QL(s, a)← (1− βt(s, a))QL(s, a) + βt(s, a) [r(s, a,L) + γmaxãQL(s′, ã)] , (9)

where the step size βt(s, a) can be chosen as (cf. [7])

βt(s, a) =

{
|#(s, a, t) + 1|−h, (s, a) = (st, at),

0, otherwise.

with h ∈ (1/2, 1). Here #(s, a, t) is the number of times up to time t that one visits the pair (s, a).
The algorithm then proceeds to choose action a′ based on QL with appropriate exploration strategies,
including the ε-greedy strategy.
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After obtaining the approximate Q̂?L, in order to retrieve an approximately optimal policy, it would be
natural to define an argmax-e operator so that actions with equal maximum Q-values would have
equal probabilities to be selected. Unfortunately, the discontinuity and sensitivity of argmax-e could
lead to an unstable algorithm (see Figure 4 for the corresponding naive Algorithm 2 in Appendix). 2

Instead, we consider a Boltzmann policy based on the operator softmaxc : Rn → Rn, defined as

softmaxc(x)i =
exp(cxi)∑n
j=1 exp(cxj)

. (10)

This operator is smooth and close to the argmax-e (see Lemma 7 in the Appendix). Moreover, even
though Boltzmann policies are not optimal, the difference between the Boltzmann and the optimal one
can always be controlled by choosing the hyper-parameter c appropriately in the softmax operator.
Note that other smoothing operators (e.g., Mellowmax [2]) may also be considered in the future.

Step 2: error control in updating L. Given the sub-optimality of the Boltzmann policy, one needs
to characterize the difference between the optimal policy and the non-optimal ones. In particular, one
can define the action gap between the best action and the second best action in terms of the Q-value
as δs(L) := maxa′∈AQ

?
L(s, a′) −maxa/∈argmaxa∈AQ

?
L(s,a)

Q?L(s, a) > 0. Action gap is important
for approximation algorithms [3], and are closely related to the problem-dependent bounds for regret
analysis in reinforcement learning and multi-armed bandits, and advantage learning algorithms
including A2C [27].

The problem is: in order for the learning algorithm to converge in terms of L (Theorem 2), one needs
to ensure a definite differentiation between the optimal policy and the sub-optimal ones. This is
problematic as the infimum of δs(L) over an infinite number of L can be 0. To address this, the
population distribution at step k, say Lk, needs to be projected to a finite grid, called ε-net. The
relation between the ε-net and action gaps is as follows:

For any ε > 0, there exist a positive function φ(ε) and an ε-net Sε := {L(1), . . . ,L(Nε)} ⊆
P(S × A), with the properties that mini=1,...,Nε dTV (L,L(i)) ≤ ε for any L ∈ P(S × A),
and that maxa′∈AQ

?
L(i)(s, a

′) − Q?L(i)(s, a) ≥ φ(ε) for any i = 1, . . . , Nε, s ∈ S, and any
a /∈ argmaxa∈AQ

?
L(i)(s, a).

Here the existence of ε-nets is trivial due to the compactness of the probability simplex P(S ×A),
and the existence of φ(ε) comes from the finiteness of the action set A. In practice, φ(ε) often takes
the form of Dεα with D > 0 and the exponent α > 0 characterizing the decay rate of the action gaps.

Finally, to enable Q-learning, it is assumed that one has access to a population simulator (See [30, 38]).
That is, for any policy π ∈ Π, given the current state s ∈ S , for any population distribution L, one can
obtain the next state s′ ∼ P (·|s, π(s, µ),L), a reward r = r(s, π(s, µ),L), and the next population
distribution L′ = Ps′,π(s′,µ). For brevity, we denote the simulator as (s′, r,L′) = G(s, π,L). Here µ
is the state marginal distribution of L.

In summary, we propose the following Algorithm 1.

Algorithm 1 Q-learning for GMFGs (GMF-Q)
1: Input: Initial L0, tolerance ε > 0.
2: for k = 0, 1, · · · do
3: Perform Q-learning for Tk iterations to find the approximate Q-function Q̂?k(s, a) = Q̂?Lk(s, a)

of an MDP with dynamics PLk(s′|s, a) and rewards rLk(s, a).
4: Compute πk ∈ Π with πk(s) = softmaxc(Q̂?k(s, ·)).
5: Sample s ∼ µk (µk is the population state marginal of Lk), obtain L̃k+1 from G(s, πk,Lk).
6: Find Lk+1 = ProjSε(L̃k+1)
7: end for

Note that softmax is applied only at the end of each outer iteration when a good approximation
of Q function is obtained. Within the outer iteration for the MDP problem with fixed mean-field
information, standard Q-learning method is applied.

2argmax-e is not continuous: Let x = (1, 1), then argmax-e(x) = (1/2, 1/2). For any ε > 0, let
y = (1, 1− ε), then argmax-e(y) = (1, 0).
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Here ProjSε(L) = argminL(1),...,L(Nε)dTV (L(i),L). For computational tractability, it would be
sufficient to choose Sε as a truncation grid so that projection of L̃k onto the epsilon-net reduces to
truncating L̃k to a certain number of digits. For instance, in our experiment, the number of digits is
chosen to be 4. The choices of the hyper-parameters c and Tk can be found in Lemma 8 and Theorem
2. In practice, the algorithm is rather robust with respect to these hyper-parameters.

In the special case when the rewards rL and transition dynamics P (·|s, a,L) are known, one can
replace the Q-learning step in the above Algorithm 1 by a value iteration, resulting in the GMF-V
Algorithm 3 in the Appendix.

We next show the convergence of this GMF-Q algorithm (Algorithm 1) to an ε-Nash of (GMFG),
with complexity analysis.
Theorem 2 (Convergence and complexity of GMF-Q). Assume the same conditions in Theorem 4
and Lemma 8 in the Appendix. For any tolerances ε, δ > 0, set δk = δ/Kε,η , εk = (k+1)−(1+η) for
some η ∈ (0, 1] (k = 0, . . . ,Kε,η − 1), Tk = TMLk (δk, εk) (defined in Lemma 8 in the Appendix)
and c = log(1/ε)

φ(ε) . Then with probability at least 1− 2δ, W1(LKε,η ,L?) ≤ Cε.
Moreover, the total number of iterations T =

∑Kε,η−1
k=0 TMLk (δk, εk) is bounded by 3

T = O
(
K

1+ 4
h

ε,η (log(Kε,η/δ))
2

1−h+
2
h+3

)
. (11)

Here Kε,η :=
⌈
2 max

{
(ηε/c)−1/η, logd(ε/max{diam(S)diam(A), c}) + 1

}⌉
is the number of

outer iterations, h is the step-size exponent in Q-learning (defined in Lemma 8 in the Appendix), and
the constant C is independent of δ, ε and η.

The proof of Theorem 2 in the Appendix depends on the Lipschitz continuity of the softmax operator
[8], the closeness between softmax and the argmax-e (Lemma 7 in the Appendix), and the complexity
of Q-learning for the MDP (Lemma 8 in the Appendix).

5 Experiment: repeated auction game

In this section, we report the performance of the proposed GMF-Q Algorithm. The objectives of the
experiments include 1) testing the convergence, stability, and learning ability of GMF-Q in the GMFG
setting, and 2) comparing GMF-Q with existing multi-agent reinforcement learning algorithms,
including IL algorithm and MF-Q algorithm.

We take the GMFG framework for the repeated auction game from Section 2.3. Here each advertiser
learns to bid in the auction with a budget constraint.

Parameters. The model parameters are set as: |S| = |A| = 10, the overbidding penalty ρ = 0.2,
the distributions of the conversion rate v ∼ uniform({1, 2, 3, 4}), and the competition intensity index
M = 5. The random fulfillment is chosen as: if s < smax, ∆(s) = 1 with probability 1

2 and
∆(s) = 0 with probability 1

2 ; if s = smax, ∆(s) = 0.

The algorithm parameters are (unless otherwise specified): the temperature parameter c = 4.0, the
discount factor γ = 0.8, the parameter h from Lemma 8 in the Appendix being h = 0.87, and the
baseline inner iteration being 2000. Recall that for GMF-Q, both v and the dynamics of P for s are
unknown a priori. The 90%-confidence intervals are calculated with 20 sample paths.

Performance evaluation in the GMFG setting. Our experiment shows that the GMF-Q Algorithm
is efficient and robust, and learns well.

Convergence and stability of GMF-Q. GMF-Q is efficient and robust. First, GMF-Q converges after
about 10 outer iterations; secondly, as the number of inner iterations increases, the error decreases
(Figure 2); and finally, the convergence is robust with respect to both the change of number of states
and the initial population distribution (Figure 3).

In contrast, the Naive algorithm does not converge even with 10000 inner iterations, and the joint
distribution Lt keeps fluctuating (Figure 4).

3Let h = 3
4

, η = 1, the bound reduces to T = O(K
19
3
ε (log(Kε

δ
))

41
3 ). Note that this bound may not be tight.
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Table 1: Q-table with TGMF-V
k = 5000.

TGMF-Q
k 1000 3000 5000 10000
∆Q 0.21263 0.1294 0.10258 0.0989

(a) GMF-Q. (b) GMF-V.

Figure 1: Q-tables: GMF-Q vs. GMF-V.

Learning accuracy of GMF-Q. GMF-Q learns well. Its learning accuracy is tested against its special
form GMF-V (Appendix G), with the latter assuming a known distribution of conversion rate v
and the dynamics P for the budget s. The relative L2 distance between the Q-tables of these two
algorithms is ∆Q := ‖QGMF-V−QGMF-Q‖2

‖QGMF-V‖2 = 0.098879. This implies that GMF-Q learns the true GMFG
solution with 90-percent accuracy with 10000 inner iterations.

The heatmap in Figure 1(a) is the Q-table for GMF-Q Algorithm after 20 outer iterations. Within each
outer iteration, there are TGMF-Q

k = 10000 inner iterations. The heatmap in Figure 1(b) is the Q-table
for GMF-Q Algorithm after 20 outer iterations. Within each outer iteration, there are TGMF-V

k = 5000
inner iterations.

Comparison with existing algorithms for N -player games. To test the effectiveness of GMF-
Q for approximating N -player games, we next compare GMF-Q with IL algorithm and MF-Q
algorithm. IL algorithm [36] considers N independent players and each player solves a decentralized
reinforcement learning problem ignoring other players in the system. The MF-Q algorithm [40]
extends the NASH-Q Learning algorithm for theN -player game introduced in [15], adds the aggregate
actions (āaa−i =

∑
j 6=i aj

N−1 ) from the opponents, and works for the class of games where the interactions
are only through the average actions of N players.
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Figure 2: Convergence with different
number of inner iterations.
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Figure 4: Fluctuations of Naive Algorithm (30 sample paths).
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(a) |S| = |A| = 10, N = 20.
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(b) |S| = |A| = 20, N = 20.
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(c) |S| = |A| = 10, N = 40.

Figure 5: Learning accuracy based on C(πππ).

Performance metric. We adopt the following metric to measure the difference between a given
policy π and an NE (here ε0 > 0 is a safeguard, and is taken as 0.1 in the experiments):

C(πππ) =
1

N |S|N
∑N

i=1

∑
sss∈SN

maxπi Vi(sss, (πππ
−i, πi))− Vi(sss,πππ)

|maxπi Vi(sss, (πππ−i, πi))|+ ε0
.

Clearly C(πππ) ≥ 0, and C(πππ∗) = 0 if and only if πππ∗ is an NE. Policy arg maxπi Vi(sss, (πππ
−i, πi)) is

called the best response to πππ−i. A similar metric without normalization has been adopted in [29].

Our experiment (Figure 5) shows that GMF-Q is superior in terms of convergence rate, accuracy, and
stability for approximating an N -player game: GMF-Q converges faster than IL and MF-Q, with the
smallest error, and with the lowest variance, as ε-net improves the stability.

For instance, when N = 20, IL Algorithm converges with the largest error 0.220. The error from
MF-Q is 0.101, smaller than IL but still bigger than the error from GMF-Q. The GMF-Q converges
with the lowest error 0.065. Moreover, as N increases, the error of GMF-Q deceases while the errors
of both MF-Q and IL increase significantly. As |S| and |A| increase, GMF-Q is robust with respect
to this increase of dimensionality, while both MF-Q and IL clearly suffer from the increase of the
dimensionality with decreased convergence rate and accuracy. Therefore, GMF-Q is more scalable
than IL and MF-Q, when the system is complex and the number of players N is large.

6 Conclusion

This paper builds a GMFG framework for simultaneous learning and decision-making, establishes
the existence and uniqueness of NE, and proposes a Q-learning algorithm GMF-Q with convergence
and complexity analysis. Experiments demonstrate superior performance of GMF-Q.
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