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Abstract

We study a two-stage scenario for learning to defer with multiple experts, which is
crucial in practice for many applications. In this scenario, a predictor is derived in
a first stage by training with a common loss function such as cross-entropy. In the
second stage, a deferral function is learned to assign the most suitable expert to each
input. We design a new family of surrogate loss functions for this scenario both in
the score-based and the predictor-rejector settings and prove that they are supported
by H-consistency bounds, which implies their Bayes-consistency. Moreover, we
show that, for a constant cost function, our two-stage surrogate losses are realizable
H-consistent. While the main focus of this work is a theoretical analysis, we also
report the results of several experiments on CIFAR-10 and SVHN datasets.

1 Introduction

Large language models (LLMs) have achieved a remarkable performance on diverse tasks across
multiple domains, as reported in recent surveys [Wei et al., 2022, Bubeck et al., 2023]. However,
their practical application faces two critical challenges: the occurrence of hallucinations, that is
the generation of incorrect or misleading content, and an inefficient inference. Leveraging multiple
experts can address both issues. To reduce hallucinations, one can refrain from using the original
predictor in uncertain instances and defer to one of the more complex and more accurate experts.
To enhance efficiency, one can derive models of different sizes distilled from the original complex
model and use one of these more streamlined versions, while deferring to the more complex and
less efficient ones for suitable contexts. Both problems require assigning each instance to the most
suitable expert. This motivates the problem of learning to defer in the presence of multiple experts.

The scenario of single-stage learning to defer has been studied by several publications, starting with
the foundational framework introduced by Cortes, DeSalvo, and Mohri [2016a,b, 2023] for learning
to reject and followed by a series of studies on abstention and deferral [Madras et al., 2018, Raghu
et al., 2019, Mozannar and Sontag, 2020, Wilder et al., 2021, Pradier et al., 2021, Keswani et al.,
2021, Raman and Yee, 2021, Liu et al., 2022, Verma and Nalisnick, 2022, Charusaie et al., 2022, Cao
et al., 2022, Verma et al., 2023, Mao et al., 2023f,b,c, Mozannar et al., 2023]. In the single-stage
scenario, a predictor and a deferral function are learned simultaneously, with the deferral function
determining the best expert assigned to each input instance. However, in practice, a predictor such
as an LLM is already available and retraining one in conjunction with a deferral function could be
prohibitively costly: depending on its size and the amount of data used, retraining could take several
weeks or months. Thus, the single-stage learning to defer scenario and its solutions often do not align
with the practical challenges encountered in real-world applications.
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Alternative post-hoc methods have been proposed to address the learning to defer problem. Okati
et al. [2021] proposed an iterative approach optimizing a predictor and a rejector over multiple epochs.
Within each epoch, first the predictor is trained on points where its loss is lower than that of a human
expert; second, the rejector is fitted to predict which of the predictor or the human expert has a
lower loss. Narasimhan et al. [2022] suggested a post-hoc correction to the single-stage learning to
defer surrogate losses, specifically the cost-sensitive softmax cross-entropy (CSS) surrogate loss in
[Mozannar and Sontag, 2020] and the one-versus-all (OvA) surrogate loss in [Verma and Nalisnick,
2022] for cases where they suffer from underfitting. However, as with the single-stage learning to
defer solutions, post-hoc approaches do not apply to scenarios where an existing predictor, pre-trained
using a standard classification loss function such as cross-entropy, is already available.

Can we derive a principled algorithm for learning to defer with multiple experts in such scenarios?
Which surrogate loss should we adopt and what consistency guarantee can we rely on? This paper
deals precisely with these questions.

A key criterion for surrogate losses in learning to defer is Bayes-consistency [Zhang, 2004, Bartlett
et al., 2006, Steinwart, 2007], that is minimizing the surrogate loss over the family of measurable
functions leads to the minimization of the deferral loss. The surrogate losses proposed in [Mozannar
and Sontag, 2020, Verma and Nalisnick, 2022] have been shown to be Bayes-consistent for defer-
ral. However, Bayes-consistency is not relevant in learning tasks since the hypothesis set used, for
example that of some family of linear functions or neural networks, never includes all measurable
functions. Long and Servedio [2013] proposed a notion of realizable H-consistency, that is consis-
tency associated with a specific hypothesis set in the realizable scenario. Mozannar et al. [2023]
recently showed that existing Bayes-consistent surrogate losses in [Mozannar and Sontag, 2020,
Verma and Nalisnick, 2022] are not realizable H-consistent for learning with deferral, which can
pose significant challenges when learning with a restricted hypothesis set H, even for simple linear
models. Instead, they proposed a new surrogate loss that is realizable H-consistent when H is closed
under scaling. However, they also observed that the loss function of Madras et al. [2018], which is
not Bayes-consistent, is actually realizable H-consistent. They acknowledged their inability to prove
or disprove whether their proposed surrogate loss is Bayes-consistent. Consequently, it has remained
an open problem to identify a surrogate loss that is both consistent and realizable-consistent.

In recent work, Verma et al. [2023] proposed the first Bayes-consistent surrogate losses in the scenario
of single-stage learning to defer with multiple experts [Hemmer et al., 2022, Keswani et al., 2021,
Kerrigan et al., 2021, Straitouri et al., 2022, Benz and Rodriguez, 2022]. This scenario is more
attractive and significant in applications such as large language models, where multiple models are
often available for deferral. However, the surrogate losses proposed by the authors do not benefit
from realizable H-consistency, even in the single-expert setting, since they are a straightforward
generalization of those of Mozannar and Sontag [2020] and Verma and Nalisnick [2022].

Bayes-consistency, or even realizable H-consistency for a specific hypothesis set H, is an asymptotic
property, and provides no guarantee for approximate minimizers since convergence could be arbitrarily
slow. More favorable guarantees, known as H-consistency bounds, were recently introduced for
standard classification settings [Awasthi, Mao, Mohri, and Zhong, 2022b,a]. These guarantees are
upper bounds on the target estimation loss expressed in terms of the surrogate estimation loss. They
are stronger and more informative guarantees than Bayes-consistency and H-consistency because they
are both hypothesis set-specific and non-asymptotic. More recently, Mao et al. [2023b] introduced a
new family of surrogate losses and algorithms for the general problem of single-stage learning to
defer with multiple experts that benefit from strong H-consistency bounds.

Our contributions. We study a two-stage scenario for learning to defer with multiple experts that is
crucial in practice for many applications. In this scenario, a predictor is derived in a first stage by
training with a common loss function such as cross-entropy. In the second stage, a deferral function
is learned to assign the most suitable expert to each input. We design a new family of surrogate
loss functions for this scenario both in the score-based setting (Section 3) and the predictor-rejector
setting (Section 4) and prove that they are supported by H-consistency bounds, which implies their
Bayes-consistency. Moreover, we show that, for a constant cost function, our two-stage surrogate
losses are realizable H-consistent. While the main focus of this work is a theoretical analysis, we
also report the results of several experiments on CIFAR-10 and SVHN datasets (Section 5). We
give a comprehensive discussion of related work in Appendix A. We begin by providing some basic
definitions and notation (Section 2).
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2 Preliminaries

We consider the standard multi-class classification setting with an input space X and a set of n ≥ 2
labels Y = [n], where we use the notation [n] to denote the set {1, . . . , n}. We study the scenario of
learning to defer with multiple experts, where the label set Y is augmented with ne additional labels
{n + 1, . . . , n + ne} corresponding to ne pre-defined experts h1, . . . , hne . In this scenario, the learner
has the option of returning a label y ∈ Y, which represents the category predicted, or a label y = n + j,
j ≥ 1, in which case it is deferring to expert hj . This setting is referred to as the score-based setting
[Mozannar and Sontag, 2020, Cao et al., 2022, Mao et al., 2023f], since the deferral corresponds
to extra ne scoring functions. An alternative setting is the predictor-rejector setting [Cortes et al.,
2016a, 2023, Mohri et al., 2023, Mao et al., 2023c], where the deferral function is selected from a
separate family of functions R. We introduce that setting and include the corresponding results in
Section 4 for completeness.

We denote by Y = [n + ne] the augmented label set and consider a hypothesis set H of functions
mapping from X × Y to R. The prediction associated by h ∈ H to an input x ∈ X is denoted by
h(x) and defined as the element in Y with the highest score, h(x) = argmaxy∈[n+ne] h(x, y), with
an arbitrary but fixed deterministic strategy for breaking ties. We denote by Hall the family of all
measurable functions.

The deferral loss function Ldef is defined as follows for any h ∈H and (x, y) ∈ X × Y:

Ldef(h,x, y) = 1h(x)≠y1h(x)∈[n] +
ne

∑
j=1

cj(x, y)1h(x)=n+j (1)

Thus, the loss incurred coincides with the standard zero-one classification loss when h(x), the label
predicted, is in Y. Otherwise, when h(x) is equal to n + j, the loss incurred is cj(x, y), the cost of
deferring to expert hj . Let c̄j(x, y) = 1 − cj(x, y). We will denote by cj ≥ 0 and cj ≤ 1 finite lower
and upper bounds on the cost c̄j , that is c̄j(x, y) ∈ [cj , cj] for all (x, y) ∈ X × Y. There are many
possible choices for these costs. Our analysis for Theorem 1, Corollary 2, Theorem 6 is general and
requires no assumption other than their boundedness. One natural choice is to define cost cj as a
function of expert hj’s inaccuracy, for example cj(x, y) = αj1hj(x)≠y + βj , with αj , βj > 0, where
hj(x) is the prediction made by hj th for input x. Typically, the hyperparameter αj has two potential
values: zero or one. When αj is set to one, the first term of the formulation pertains to the inaccuracy
of expert expert hj . Conversely, with αj set to zero, the first term vanishes, focusing solely on the
inference cost. Theorems 5 and 7 are analyzed under this assumption. The βj in the second term
corresponds to the inference cost incurred by expert hj .

Given a distribution D over X × Y, we will denote by ELdef
(h) the expected deferral loss of a

hypothesis h ∈ H, ELdef
(h) = E(x,y)∼D[Ldef(h,x, y)], and by E∗Ldef

(H) = infh∈H ELdef
(h) its

infimum or best-in-class expected loss. We will adopt similar definitions for other loss functions.

Given a hypothesis set H, an H-consistency bound [Awasthi et al., 2021a,b, 2022b,a, 2023a,b, Mao
et al., 2023h,d,e, Zheng et al., 2023, Mao et al., 2023a,g] for a surrogate loss `1 of a target loss
function `2 is an inequality of the form

∀h ∈H, E`2(h) − E∗`2(H) +M`1(H) ≤ Γ(E`1(h) − E∗`1(H) +M`1(H)), (2)

where Γ∶R+ → R+ is a non-decreasing function with Γ(0) = 0 and where M`(H) is the minimizability
gap for the hypothesis set H and loss function `. M`(H) is defined as the difference of the
best-in-class expected loss and that of the expected pointwise infimum loss: M`(H) = E∗` (H) −

Ex[infh∈H Ey∣x[`(h,x, y)]]. By the super-additivity of the infimum, the minimizability gap is always
non-negative. The minimizability gap vanishes when the best-in-class error E∗` (H) coincides with
the Bayes error E∗` (Hall), in particular when H =Hall [Awasthi et al., 2022a,b].

Thus, the H-consistency bound (2) relates the minimization of the estimation error for the surrogate
loss `1 to that of the target loss `2 in a quantitative way. It is a stronger and more informative guarantee
than Bayes-consistency which implies Bayes-consistency, as can be seen by setting H =Hall.
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Table 1: Common surrogate losses in standard multi-class classification.
Name Formulation

Sum exponential loss `exp(h,x, y) = ∑y′≠y e
h(x,y′)−h(x,y).

Multinomial logistic loss `log(h,x, y) = log(∑y′∈Y∪{0} e
h(x,y′)−h(x,y)).

Generalized cross-entropy loss `gce(h,x, y) =
1
α
[1 − [ eh(x,y)

∑y′∈Y∪{0} e
h(x,y′)

]
α

], α ∈ (0,1).

Mean absolute error loss `mae(h,x, y) = 1 − eh(x,y)

∑y′∈Y∪{0} e
h(x,y′)

.

3 Two-stage H-consistent surrogate loss

In this section, we consider an important two-stage scenario for learning to defer with multiple experts.
This is a critical scenario in practice for many applications where a predictor is already available, as
a result of training with a loss function ` supported by H-consistency bounds, such as the logistic
loss (first stage). The logistic loss coincides with the cross-entropy loss when a softmax activation is
applied to the output of a neural network. The problem then consists of learning a deferral function
(second stage) to assign the most suitable expert to each input instance.

We first design a new family of surrogate losses for this two-stage scenario (Section 3.1). Next, we
show that our surrogate losses benefit from H-consistency bounds (Section 3.2). As a by-product,
we prove H-consistency bounds in standard multi-class classification, where H denotes hypothesis
sets with a fixed scoring function (Section 3.3). These bounds have not been studied before and can
be of independent interest in other consistency studies. Moreover, we show that, for a constant cost
function, our two-stage surrogate losses are realizable H-consistent (Section 3.4).

3.1 General surrogate losses

A hypothesis set H of functions mapping from X×[n+ne] to R can be decomposed as H =Hp×Hd,
where Hp denotes the hypothesis set spanned by the first n scores, used for prediction, and Hd the
hypothesis set spanned by the final ne scores, used for deferral. Thus, any h ∈H can be written as a
pair h = (hp, hd) with hp ∈Hp and hd ∈Hd.

Let ` be a surrogate loss for standard multi-class classification with n classes. We consider the
following two-stage scenario: in the first stage, hp is learned using the surrogate loss `1; in the second
stage, hd is learned using a surrogate loss Lhp that depends on the prediction function hp learned in
the first stage.

To any hd ∈ Hd, we associate a hypothesis hd defined over (ne + 1) classes {0,1, . . . , ne} by
hd(x,0) = maxy∈Y hp(x, y), that is the maximal score assigned by hp to its predicted label, and
hd(x, j) = hd(x, j) for j ∈ [ne]. We can then define our suggested surrogate loss for the second
stage as follows:

Lhp(hd, x, y) = 1hp(x)=y `2(hd, x,0) +
ne

∑
j=1

c̄j(x, y)`2(hd, x, j), (3)

where `2(hd, x, j) is a surrogate loss for standard multi-class classification with (ne + 1) categories
{0,1, . . . , ne}. Intuitively, the indicator term 1h(x)≠n+j in the deferral loss (1) penalizes hd(x, j)
when it has a small value. Similarly, for a standard surrogate loss `2(hd, x, j) such as the logistic loss,
it penalizes hd(x, j) when it has a small value as well. In Table 2, we present a summary of examples
of such second-stage surrogate losses, where `2 is selected from common surrogate losses in standard
multi-class classification defined in Table 1. A detailed derivation is presented in Appendix B.

From the point of view of the second stage, x↦ hd(x,0) = maxy∈Y hp(x, y) is a fixed function. We
will denote by Hd the family of hypotheses hd∶X × {0,1, . . . , ne}→ R whose first scoring function,
hd(⋅,0), is fixed and not to be learned in the second stage.

Our formulation bears some similarity with the design of a surrogate loss function for rejectors in
[Cortes et al., 2016a, 2023] for learning with rejection in binary classification, where the cost is a
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constant. However, our surrogate loss is tailored to accommodate a general cost function depending
on both x and y for deferral, in contrast with a constant one, and it allows for multiple deferral
options, as opposed to only one rejection option.

3.2 H-consistency bounds for two-stage surrogate losses

In this section, we provide strong guarantees for two-stage surrogate losses, provided that the first-
stage loss function `1 admits an Hp-consistency bound, and the second-stage surrogate `2 admits an
Hd-consistency bound.
Theorem 1 (H-consistency bounds for score-based two-stage surrogates). Assume that `1 admits
an Hp-consistency bound and `2 admits an Hd-consistency bound with respect to the multi-class
zero-one classification loss `0−1 respectively. Thus, there are non-decreasing concave functions Γ1

and Γ2 such that, for all hp ∈Hp and hd ∈Hd, we have

E`0−1(hp) − E∗`0−1(Hp) +M`0−1(Hp) ≤ Γ1(E`1(hp) − E∗`1(Hp) +M`1(Hp))

E`0−1(hd) − E∗`0−1(Hd) +M`0−1(Hd) ≤ Γ2(E`2(hd) − E∗`2(Hd) +M`2(Hd)).

Then, the following holds for all h ∈H:

ELdef
(h) − E∗Ldef

(H) +MLdef
(H)

≤ Γ1(E`1(hp) − E∗`1(Hp) +M`1(Hp)) + (1 +
ne

∑
j=1

cj)Γ2(
ELhp

(hd) − E∗Lhp
(Hd) +MLhp

(Hd)

∑
ne
j=1 cj

).

Furthermore, constant factors (1 +∑
ne
j=1 cj) and 1

∑
ne
j=1 cj

can be removed when Γ2 is linear.

The proof is given in Appendix D. It consists of expressing the conditional regret of the deferral
loss as the sum of two regrets, first by minimizing hd for a fixed hp and then by minimizing hp.
Subsequently, we show how each regret can be upper-bounded in terms of the conditional regret of
each stage’s surrogate loss, leveraging the Hp-consistency bound of `1 and Hd-consistency bound of
`2 with respect to the zero-one loss. This, in conjunction with the concavity of functions Γ1 and Γ2,
establishes our H-consistency bounds.

Thus, the theorem provides a strong guarantee for the two-stage surrogate losses. A specific instance of
Theorem 1 holds for the case where E∗`1(Hp) = E∗`1(Hall) and E∗Lhp (Hd) = E∗Lhp

(Hall), ensuring that
the Bayes-error coincides with the best-in-class error and, consequently, M`1(Hp) =MLhp

(Hd) = 0.
Given Theorem 1 and the non-negativity property of MLdef

(H), we can derive the following corollary.

Corollary 2. Assume that ` satisfies the same assumption as in Theorem 1. Then, for all h ∈H and
any distribution such that E∗`1(Hp) = E∗`1(Hall) and E∗Lhp

(Hd) = E∗Lhp
(Hall), we have

ELdef
(h) − E∗Ldef

(H) ≤ Γ1(E`1(hp) − E∗`1(Hp)) +
⎛

⎝
1 +

ne

∑
j=1

cj
⎞

⎠
Γ2

⎛

⎝

ELhp
(hd) − E∗Lhp

(Hd)

∑
ne
j=1 cj

⎞

⎠
,

where the constant factors (1 +∑
ne
j=1 cj) and 1

∑
ne
j=1 cj

can be removed when Γ2 is linear.

Corollary 2 implies that when the estimation error of the first-stage surrogate loss, E`1(hp)−E
∗
`1
(Hp),

is reduced to ε1, and the estimation error of the second-stage surrogate loss, ELhp
(hd) − E∗Lhp

(Hd),
is reduced to ε2, the estimation error of the deferral loss, ELdef

(h) − E∗Ldef
(H), is upper-bound by

Γ1(ε1) +
⎛

⎝
1 +

ne

∑
j=1

cj
⎞

⎠
Γ2(

ε2

∑
ne
j=1 cj

).

The common surrogate losses mentioned earlier all satisfy the first-stage requirement; however, it
was unclear if they would meet the second-stage criterion since the Hd-consistency bound is for
hypothesis sets Hd with a fixed first scoring function. This has not been previously studied in the
literature. In the next section, we prove for the first time that common multi-class surrogate losses,
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Table 2: Examples for score-based second-stage surrogate losses (3).
`2 Lhp

`exp 1hp(x)=y∑
ne
i=1 e

h(x,n+i)−maxy∈Y h(x,y) +∑
ne
j=1 cj(x, y)[∑

ne
i=1,i≠j e

h(x,n+i)−h(x,n+j) + emaxy∈Y h(x,y)−h(x,n+j)]

`log −1hp(x)=y log( e
maxy∈Y h(x,y)

e
maxy∈Y h(x,y)+∑

ne
i=1 e

h(x,n+i)
) −∑

ne
j=1 cj(x, y) log( eh(x,n+j)

e
maxy∈Y h(x,y)+∑

ne
i=1 e

h(x,n+i)
)

`gce 1hp(x)=y
1
α
[1 − [ e

maxy∈Y h(x,y)

e
maxy∈Y h(x,y)+∑

ne
i=1 e

h(x,n+i)
]
α

] +∑
ne
j=1 cj(x, y)

1
α
[1 − [ eh(x,n+j)

e
maxy∈Y h(x,y)+∑

ne
i=1 e

h(x,n+i)
]
α

]

`mae 1hp(x)=y[1 −
e
maxy∈Y h(x,y)

e
maxy∈Y h(x,y)+∑

ne
i=1 e

h(x,n+i)
] +∑

ne
j=1 cj(x, y)[1 −

eh(x,n+j)

e
maxy∈Y h(x,y)+∑

ne
i=1 e

h(x,n+i)
]

such as the logistic loss, satisfy this requirement and can be incorporated into both the first and second
stage. Hence, based on [Mao et al., 2023h, Theorem 1] and Theorem 3 in Section 3.3, when using
logistic loss in both stages, the concave functions are Γ1(t) = Γ2(t) =

√
2t, and thus Corollary 2

yields the following H-consistency bound:

ELdef
(h) − E∗Ldef

(H) ≤
√

2 [E`1(hp) − E∗`1(Hp)]
1
2 +

√
2
⎡
⎢
⎢
⎢
⎣
1 +

ne

∑
j=1

cj
⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

ELhp
(hd) − E∗Lhp

(Hd)

∑
ne
j=1 cj

⎤
⎥
⎥
⎥
⎥
⎦

1
2

.

In particular, the bound implies the Bayes-consistency of the two-stage surrogate loss when `1 = `2 =
`log. Similarly, for other choices of `1 and `2 defined in Table 1, the two-stage surrogate loss benefits
from an H-consistency bound and is also Bayes-consistent.

3.3 H-consistency bounds for standard surrogate loss functions

In this section, we seek to derive H-consistency bounds for common surrogate losses defined in
Table 1 in the standard multi-class classification scenario. Recall that the first scoring function of
hypotheses in Hd is the function maxy∈Y hp(⋅, y). Here, for any given function λ mapping from X to
R, we define the hypothesis set H augmented by λ in a similar way, that is to any h ∈H we associate
a hypothesis h ∈H defined by h(x,0) = λ(x) and h(x, j) = h(x, j) for j ≥ 1. These H-consistency
bounds offer strong guarantees when the loss functions in Table 1 are used in the second stage of
the two-stage learning to defer surrogate losses (3) instantiated in Table 2. We believe that these
results are of independent interest and can admit other applications in the study of H-consistency
bounds. As with [Mao et al., 2023h], we assume that the hypothesis set H is symmetric and complete.
A hypothesis set is said to be symmetric if there exists a family F of functions f mapping from
X to R such that {[h(x,1), . . . , h(x,n)]∶h ∈H} = {[f1(x), . . . , fn(x)]∶ f1, . . . , fn ∈ F}, for any
x ∈ X. A hypothesis set H is said to be complete if the set of scores it generates spans R, that is,
{h(x, y)∶h ∈H} = R, for any (x, y) ∈ X × Y.

Note that for a symmetric and complete H, the associated H is not symmetric and complete.
Therefore, the proof of Mao et al. [2023h] cannot be generalized to our setting. Our proofs are
presented in Appendix E. We give a new method for upper bounding the conditional regret of the
zero-one loss by that of a surrogate loss. To achieve this, we upper bound the minimal conditional
surrogate loss by the conditional loss of a carefully constructed hypothesis in H denoted by hµ. The
resulting softmax Sµ of this hypothesis only differs from the original softmax S corresponding to h
on exactly two of the labels.

Theorem 3 (H-consistency bounds). Assume that H is symmetric and complete. Then, for any
function λ mapping from X to R, hypothesis h in the associated hypothesis set H and any distribution,
the following inequality holds:

E`0−1(h) − E∗`0−1(H) ≤ Γ(E`(h) − E∗` (H) +M`(H)) −M`0−1(H),

where Γ(t) =
√

2t for ` = `log or `exp; Γ(t) =
√

2(n + 1)α t for ` = `gce; and Γ(t) = (n + 1) t for
` = `mae.

Let us underscore that our proof technique is novel and distinct from the approach used in [Mao
et al., 2023h]. Their method is tailored for hypothesis sets where each score can span across R. This
is not applicable in our context where the hypothesis set adheres to a predefined scoring function.
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In their proof, to set an upper bound on the estimation error of the zero-one loss using that of the
surrogate loss, they select an auxiliary function hµ for any hypothesis h. This function is contingent
on the distinct scores of h. Subsequently, the authors choose an optimal µ to set these bounds.
Nevertheless, if any of h’s scores are fixed, an optimal µ does not exist, preventing the establishment
of a meaningful bound. Instead, our new proof method overcomes this limitation by choosing hµ
based on the softmax, as the softmax corresponding to the label zero can still vary due to the influence
of changes in other scores, even when the scoring function on label zero is fixed.

3.4 Realizable H-consistency

Recently, Mozannar et al. [2023] showed that even in the straightforward single-expert setting,
existing Bayes-consistent single-stage surrogate losses [Mozannar and Sontag, 2020, Verma and
Nalisnick, 2022] are not realizable H-consistent [Long and Servedio, 2013, Zhang and Agarwal,
2020] for learning with deferral. This can pose significant challenges when learning with a restricted
hypothesis set H, even for simple linear models. Instead, they proposed a new surrogate loss that
is realizable H-consistent when H is closed under scaling, meaning that it satisfies the condition
h ∈ H ⇒ τh ∈ H for all τ in the set of real numbers. However, they stated that they could not
prove or disprove whether their proposed surrogate loss is Bayes-consistent. Consequently, it has
become crucial to identify a surrogate loss that is both consistent and realizable-consistent, which has
remained an open problem.
Definition 4 (Realizable H-consistency). A surrogate loss L is considered a realizable H-consistent
loss function for the deferral loss Ldef if, for any distribution that is H-realizable, that is, there exists
a zero loss solution h∗ ∈H with ELdef

(h∗) = 0, optimizing the surrogate loss results in obtaining the
zero-error solution:

EL(hn) − E∗L(H)
n→+∞
ÐÐÐ→ 0 Ô⇒ ELdef

(hn) − E∗Ldef
(H)

n→+∞
ÐÐÐ→ 0.

In the following result, we show that our two-stage surrogate losses are realizable H-consistent.
Combined with their Bayes-consistency properties, which have already been established in Section 3.2,
we effectively find surrogate losses that are both Bayes-consistent and realizable consistent in the
multi-expert setting, including the single-expert setting as a special case. For simplicity, here, we
study the case where `1 = `2 = `log, a similar proof holds for other choices of `1 and `2 defined in
Table 1. The proof is included in Appendix F.
Theorem 5 (Realizable H-consistency for score-based two-stage surrogates). Assume that H is
closed under scaling and cj(x, y) = βj ,∀(x, y) ∈ X × Y. Let `1 and `2 be the logistic loss. Let ĥp be
the minimizer of E`1 and ĥd be the minimizer of ELĥp

such that ELĥp
(ĥd) = minh ELhp

(hd). Then,
the following equality holds for any (H, R) -realizable distribution,

ELdef
(ĥ) = 0, where ĥ = (ĥp, ĥd).

Theorem 5 suggests that when the estimation error of the first-stage surrogate loss, E`1(h
n
p) −

E∗`1(Hp)
n→+∞
ÐÐÐ→ 0, and the estimation error of the second-stage surrogate loss, ELhp

(hnd) −

E∗Lhp
(Hd)

n→+∞
ÐÐÐ→ 0, the estimation error of the deferral loss, ELdef

(hn) − E∗Ldef
(H)

n→+∞
ÐÐÐ→ 0.

This result demonstrates that our two-stage surrogate losses are not only Bayes-consistent, but also
realizable H-consistent when only the inference cost (βj) exists.

4 Predictor-rejector setting

The results of the previous sections were all given for the score-based setting. We note that another
popular setting in learning with deferral/abstention is the predictor-rejector setting [Cortes et al.,
2016a, 2023], where the deferral corresponds to a separate function R instead of extra scores. For
completeness, we introduce this setting as well. Here too, we design a family of two-stage surrogate
losses benefiting from both (H,R)-consistency bounds and realizable consistency. For simplicity,
we overload the notation as with score-based setting based on the context.

Let H be a hypothesis set of prediction functions mapping from X × Y to R. The label predicted
for x ∈ X using a hypothesis h ∈ H is denoted by h(x) and defined as one with the highest score,
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Table 3: Examples for predictor-rejector second-stage surrogate losses (5).
`2 Lhp

`exp 1h(x)=y∑
ne
i=1 e

−ri(x) +∑
ne
j=1 c̄j(x, y)[∑

ne
i=1,i≠j e

rj(x)−ri(x) + erj(x)]

`log −1h(x)=y log( 1
1+∑

ne
i=1 e

−ri(x)
) −∑

ne
j=1 c̄j(x, y) log( e−rj(x)

1+∑
ne
i=1 e

−ri(x)
)

`gce 1h(x)=y
1
α
[1 − [ 1

1+∑
ne
i=1 e

−ri(x)
]
α

] +∑
ne
j=1 c̄j(x, y)

1
α
[1 − [ e−rj(x)

1+∑
ne
i=1 e

−ri(x)
]
α

]

`mae 1h(x)=y[1 −
1

1+∑
ne
i=1 e

−ri(x)
] +∑

ne
j=1 c̄j(x, y)[1 −

e−rj(x)

1+∑
ne
i=1 e

−ri(x)
]

h(x) = argmaxy∈Y h(x, y), with an arbitrary but fixed deterministic strategy for breaking ties. Let
R be a family of deferring functions mapping from X to Rne , where ne is the number of experts.
A deferral r = (r1, . . . , rne) ∈ R is used to defer the prediction on input x to the jth expert hj if
rj(x) ≤ 0 and rj(x) < minnei=1,i≠j ri(x), in which case a cost cj(x, y) = 1− c̄j(x, y) ∈ [1− cj ,1− cj]

is incurred with 0 < cj ≤ cj ≤ 1. A natural choice of the cost is cj(x, y) = αj1hj(x)≠y + βj , where
αj , βj > 0 and hj is the prediction of the jth expert. The βj in the second term corresponds to the
inference cost incurred by expert hj . Let r0 = 0 and define r(x) = 0 if r0(x) < minj∈[ne] rj(x);
otherwise, r(x) = argminj∈[ne] rj(x), with an arbitrary but fixed deterministic strategy for breaking
ties. The learning to defer loss Ldef with ne experts is defined as follows for any (h, r) ∈H ×R and
(x, y) ∈ X × Y:

Ldef(h, r, x, y) = 1h(x)≠y1r(x)=0 +
ne

∑
j=1

cj(x, y)1r(x)=j . (4)

Given a distribution D over X × Y, we will denote by ELdef
(h, r) the expected deferral loss of a

predictor h ∈H and a deferral r ∈ R, ELdef
(h, r) = E(x,y)∼D[Ldef(h, r, x, y)], and by E∗Ldef

(H,R) =

infh∈H,r∈R ELdef
(h, r) its infimum or best-in class expected loss. We will adopt similar definitions

for other loss functions. We denote by ML(H,R) = E∗L(H,R) −Ex[infh∈H,r∈REy∣x[L(h, r, x, y)]]
the minimizability gap for hypothesis sets (H,R) and a loss function L.

Let `1 be a surrogate loss for standard multi-class classification with n classes. We consider the
following two-stage scenario: in the first stage, a predictor h is learned using the surrogate loss `1;
in the second stage, r is learned using a surrogate loss Lh that depends on the prediction function h
learned in the first stage.

To any r ∈ R, we associate a hypothesis r defined over (ne + 1) classes {0,1, . . . , ne} by r(x,0) = 0,
that is zero scoring function, and r(x, j) = −rj(x) for j ∈ [ne]. We can then define our suggested
surrogate loss for the second stage:

Lh(r, x, y) = 1h(x)=y`2(r, x,0) +
ne

∑
j=1

cj(x, y)`2(r, x, j). (5)

Here, `2(r, x, j) is a surrogate loss for standard multi-class classification with (ne + 1) categories
{0,1, . . . , ne}. Intuitively, the indicator term 1r(x)≠j in the deferral loss penalizes rj(x) when it
has a large value. However, a standard surrogate loss `2(r, x, j) such as the logistic loss penalizes
r(x, j) when it has a small value. This is why we use a negative sign in the definition of r to maintain
consistency between the definitions of Lh and Ldef . In Table 3, we present a summary of examples of
such second-stage surrogate losses, where `2 is selected from common surrogate losses in standard
multi-class classification defined in Table 1. A detailed derivation is presented in Appendix C.

From the point of view of the second stage, we will denote by R the family of hypotheses r∶X ×

{0,1, . . . , ne} → R whose first scoring function, r(⋅,0), is zero function and will not be learned in
the second stage. We will provide strong guarantees for two-stage surrogate losses, provided that the
first-stage loss function `1 admits an H-consistency bound, and the second-stage loss function `2
admits an R-consistency bound.

Theorem 6 ((H,R)-consistency bounds for predictor-rejector two-stage surrogates). Assume
that `1 admits an H-consistency bound and `2 admits an R-consistency bound with respect to the
multi-class zero-one classification loss `0−1 respectively. Thus, there are non-decreasing concave
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functions Γ1 and Γ2 such that, for all h ∈H and r ∈ R, we have

E`0−1(h) − E∗`0−1(H) +M`0−1(H) ≤ Γ1(E`1(h) − E∗`1(H) +M`1(H)

E`0−1(r) − E∗`0−1(R) +M`0−1(R) ≤ Γ2(E`2(r) − E∗`2(R) +M`2(R)).

Then, the following holds for all h ∈H and r ∈ R:

ELdef
(h, r) − E∗Ldef

(H,R) +MLdef
(H,R)

≤ Γ1(E`1(h) − E∗`1(H) +M`1(H)) +
⎛

⎝
1 +

ne

∑
j=1

cj
⎞

⎠
Γ2(

ELh(r) − E∗Lh(R) +MLh(R)

∑
ne
j=1 cj

),

where the constant factors (1 +∑
ne
j=1 cj) and 1

∑
ne
j=1 cj

can be removed when Γ2 is linear.

As with the score-based setting, a specific instance of Theorem 6 holds for the case where E∗`1(H) =

E∗`1(Hall) and E∗Lh(R) = E∗Lh(Rall), ensuring that the Bayes-error coincides with the best-in-class
error and, consequently, M`1(H) = MLh(R) = 0. In these cases, when the estimation error of
the first-stage surrogate loss, E`1(h) − E∗`1(H), is reduced to ε1, and the estimation error of the
second-stage surrogate loss, ELh(r) − E∗Lh(R), is reduced to ε2, the estimation error of the deferral
loss, ELdef

(h, r) − E∗Ldef
(H,R), is upper bounded by

Γ1(ε1) +
⎛

⎝
1 +

ne

∑
j=1

cj
⎞

⎠
Γ2(

ε2

∑
ne
j=1 cj

).

Next, we show that our two-stage surrogate losses are realizable (H,R)-consistent. We say that
the distribution is (H,R)-realizable, if there exists a zero error solution (h∗, r∗) ∈ H × R with
ELdef

(h∗, r∗) = 0.
Theorem 7 (Realizable (H,R)-consistency for predictor-rejector two-stage surrogates). As-
sume that H and R is closed under scaling and cj(x, y) = βj ,∀(x, y) ∈ X × Y. Let `1 and `2 be the
logistic loss. Let ĥ be the minimizer of E`1 and r̂ be the minimizer of ELĥ

. Then, the following holds
for any (H, R) -realizable distribution,

ELdef
(ĥ, r̂) = 0.

The proof is included in Appendix H. Theorem 7 suggests that the two-stage surrogate loss is realizable
consistent: when the estimation error of the first-stage surrogate loss E`1(hn)−E

∗
`1
(H)

n→+∞
ÐÐÐ→ 0, and

the estimation error of the second-stage surrogate loss ELh(rn) − E∗Lh(R)
n→+∞
ÐÐÐ→ 0, the estimation

error of the deferral loss, ELdef
(hn, rn) − E∗Ldef

(H,R)
n→+∞
ÐÐÐ→ 0. By Theorem 6 and Theorem 7, in

the predictor-rejector setting, we also effectively find both Bayes-consistent and realizable consistent
surrogate losses with multiple experts when only the inference cost (βj) exists.

Note that while Sections 3 and 4 both propose new two-stage algorithms based on H-consistent
surrogate losses, they differ in an important way. Section 3 learns with deferral in a score-based
framework, where deferral is associated with extra scores. In contrast, Section 4 learns with deferral
in a predictor-rejector setting, where deferral corresponds to a separate function. These represent two
distinct learning frameworks that have been studied in the literature. Deriving consistent surrogate
losses in the predictor-rejector setting has historically been challenging for traditional single-stage
scenarios, leading many to opt for the score-based approach.

We should also highlight that our H-consistency bounds in Theorems 1 and 6 can be used to derive
finite sample estimation bounds for the minimizer of the surrogate loss over a hypothesis set H.
This is achieved by upper bounding the estimation error of the minimizer of the surrogate loss using
standard Rademacher complexity bounds (see [Mao et al., 2023h]).

5 Experiments

In this section, we report the results of our experiments on CIFAR-10 [Krizhevsky, 2009] and SVHN
[Netzer et al., 2011] datasets to test the effectiveness of our proposed algorithms for two-stage
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Table 4: Accuracy of deferral with multiple experts: mean ± standard deviation over three runs.
Dataset Base cost Base model Single expert Two experts Three experts

SVHN 7 91.12 91.85 ± 0.01% 92.77 ± 0.02% 93.30 ± 0.02%
CIFAR-10 7 70.56 72.63 ± 0.20% 75.84 ± 0.35% 77.68 ± 0.07%
SVHN 3 91.12 91.66 ± 0.01% 92.05 ± 0.10% 92.19 ± 0.03%
CIFAR-10 3 70.56 71.73 ± 0.06% 72.31 ± 0.31% 72.42 ± 0.12%

learning to defer with multiple experts. We evaluated the overall accuracy of the learned pairs of
predictor and deferral model across different scenarios involving varying the number of experts,
where the predictor is pre-learned in the first stage and the deferral is subsequently learned using our
proposed surrogate loss. We find that as the number of experts increases, the overall accuracy of the
learned pairs also increases, in both scenarios with zero and non-zero base costs. This observation
highlights the significance of using a multiple expert framework in our approach and the effectiveness
of our surrogate loss within the framework.

We used ResNet architectures [He et al., 2016] for the prediction model, the deferral model and
expert models. More precisely, we used ResNet-4 for both the predictor and the deferral. We adopted
three expert models: ResNet-10, ResNet-16, ResNet-28 with increasing capacity. For training, we
used the Adam optimizer [Kingma and Ba, 2014] with a batch size of 128 and weight decay 1× 10−4.
Training was run for 15 epochs for SVHN and 50 epochs for CIFAR-10 with the default learning rate.
No data augmentation was used in our experiments. We used our two-stage surrogate loss (3) with
the logistic loss ` = `log to train the deferral model ResNet-4, with a pre-learned predictor ResNet-4
trained using logistic loss. A check mark indicates the presence of a base cost in the cost function,
whereas a cross mark signifies its absence. We first set the cost function to be 1hj(x)≠y without a
base cost. Next, for the experimental results shown in the last two row of Table 4, we chose base
costs βj associated with each expert model as: 0.1, 0.12, 0.14 increasing with model capacity for
SVHN and 0.3, 0.32, 0.34 increasing with model capacity for CIFAR-10. A base cost value that is
close to the misclassification loss can strike a balance between improving accuracy and maintaining
the ratio of deferral. We observed that other neighboring values lead to similar results. Note that the
accuracy here refers to the overall accuracy of the learned pairs of predictor and deferral model. It is
related to the deferral loss. Specifically, in the absence of the base cost, the accuracy aligns precisely
with one minus the expected deferral loss. The results of Table 4 demonstrate the effectiveness of our
proposed algorithms for two-stage learning to defer with multiple experts.

To the best of our knowledge, our study pioneers the exploration of a two-stage learning approach for
deferral, a framework that is essential in numerous practical applications. Thus, we are unaware of
any established baselines within this context.

It is important to underscore the differences between our learning scenario and those presented in
[Okati et al., 2021, Narasimhan et al., 2022]. While both of them involve two phases, their methodolo-
gies are considerably different from ours. Okati et al. [2021] required conditional probabilities paired
with loss estimates from the expert—a component not available in our framework, as emphasized by
Mozannar et al. [2023]. On the other hand, Narasimhan et al. [2022] proposed a post-hoc correction
for single-stage learning to defer surrogate losses. This approach, however, is not applicable to a
pre-trained predictor from the standard multi-class classification. In contrast, our work focuses on
enhancing the pre-trained predictor within the standard framework.

A limitation of our study is that the cost function used within the deferral loss is not fixed, and
is typically determined through cross-validation in practice. There exists potential to introduce a
principled method for selecting the cost function, which we have reserved for future research.

6 Conclusion

We introduced a novel family of surrogate loss functions and algorithms for a crucial two-stage
learning to defer approach with multiple experts. We proved that these surrogate losses are supported
by H-consistency bounds and established their realizable H-consistency properties for a constant
cost function. This work paves the way for comparing different surrogate losses and cost functions
within our framework. Further exploration, both theoretically and empirically, holds the potential to
identify optimal choices for these quantities across diverse tasks.
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A Related work

The scenario of single-stage learning to defer has been extensively explored in previous research.
The initial studies focused on the problem of abstention and introduced various approaches such as
confidence-based abstention [Chow, 1957, 1970, Herbei and Wegkamp, 2005, Bartlett and Wegkamp,
2008, Grandvalet et al., 2008, Yuan and Wegkamp, 2010, 2011, Ramaswamy et al., 2018, Ni et al.,
2019], selective classification [El-Yaniv et al., 2010, Wiener and El-Yaniv, 2011, Kalai et al., 2012,
Geifman and El-Yaniv, 2017, 2019, Ziyin et al., 2019, Acar et al., 2020, Gangrade et al., 2021], a
predictor-rejector framework for abstention [Cortes et al., 2016a,b, Charoenphakdee et al., 2021,
Cortes et al., 2023, Mohri et al., 2023, Mao et al., 2023c], and a score-based setting for abstention
[Mozannar and Sontag, 2020, Raman and Yee, 2021, Liu et al., 2022, Verma and Nalisnick, 2022,
Charusaie et al., 2022, Cao et al., 2022, Mao et al., 2023f, Verma et al., 2023, Mao et al., 2023b,
Mozannar et al., 2023].

Another line of research is centered around the joint learning of prediction and deferral functions.
Several publications by Madras et al. [2018], Raghu et al. [2019], Wilder et al. [2021], Pradier et al.
[2021], Keswani et al. [2021] delve into this topic, considering single-stage learning to defer and
its variants. Additionally, the concept of learning to defer has been explored in different scenarios,
including combining human and machine predictions, investigating human preferences, regression
problems, reinforcement learning, and more [Kamar et al., 2012, Tan et al., 2018, Kleinberg et al.,
2018, Bansal et al., 2021, De et al., 2020, Straitouri et al., 2021, Zhao et al., 2021, Joshi et al., 2021,
Gao et al., 2021, Mozannar et al., 2022, Hemmer et al., 2023, Narasimhan et al., 2023]. However, in
practice, a predictor such as an LLM is already available and retraining one in conjunction with a
deferral function could be prohibitively costly: depending on its size and the amount of data used,
retraining could take several weeks or months. Thus, the single-stage learning to defer scenario and
its solutions often do not align with the practical challenges encountered in real-world applications.

Alternative post-hoc methods have been proposed to address the learning to defer problem. Okati
et al. [2021] proposed an iterative approach optimizing a predictor and a rejector over multiple epochs.
Within each epoch, first the predictor is trained on points where its loss is lower than that of a human
expert; second, the rejector is fitted to predict which of the predictor or the human expert has a
lower loss. Narasimhan et al. [2022] suggested a post-hoc correction to the single-stage learning to
defer surrogate losses, specifically the cost-sensitive softmax cross-entropy (CSS) surrogate loss in
[Mozannar and Sontag, 2020] and the one-versus-all (OvA) surrogate loss in [Verma and Nalisnick,
2022] for cases where they suffer from underfitting. However, as with the single-stage learning to
defer solutions, post-hoc approaches do not apply to scenarios where an existing predictor, pre-trained
using a standard classification loss function such as cross-entropy, is already available.

A key criterion for surrogate losses in the scenario of learning to defer is Bayes-consistency (also
known as consistency) [Zhang, 2004, Bartlett et al., 2006, Steinwart, 2007, Mohri et al., 2018]. This
property guarantees that minimizing the surrogate loss over the family of measurable functions leads
to the minimization of the deferral loss. The surrogate losses proposed in [Mozannar and Sontag,
2020, Verma and Nalisnick, 2022] have shown to be Bayes-consistent for deferral. However, Bayes-
consistency is a property associated with the family of all measurable functions, which of course is
considerably broader than the hypothesis sets typically used in learning algorithms, including linear
hypothesis sets and the family of neural networks.

Instead, Long and Servedio [2013], Kuznetsov et al. [2014], Zhang and Agarwal [2020] proposed a
notion of realizable H-consistency, that is consistency associated with a specific hypothesis set in the
realizable scenario. Mozannar et al. [2023] recently showed that existing Bayes-consistent surrogate
losses in [Mozannar and Sontag, 2020, Verma and Nalisnick, 2022] are not realizable H-consistent
for learning with deferral, which can pose significant challenges when learning with a restricted
hypothesis set H, even for simple linear models. Instead, they proposed a new surrogate loss that is
realizable H-consistent when H is closed under scaling. However, they also observed that the loss
function of Madras et al. [2018], which is not Bayes-consistent, is actually realizable H-consistent.
They acknowledged their inability to prove or disprove whether their proposed surrogate loss is
Bayes-consistent. Consequently, it has remained an open problem to identify a surrogate loss that is
both consistent and realizable-consistent.

In recent work, Verma et al. [2023] proposed the first Bayes-consistent surrogate losses in the scenario
of learning to defer with multiple experts [Hemmer et al., 2022, Keswani et al., 2021, Kerrigan et al.,
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2021, Straitouri et al., 2022, Benz and Rodriguez, 2022]. This scenario is more attractive and
significant in applications such as large language models, where multiple models are often available
for deferral. However, the surrogate losses proposed by the authors do not benefit from realizable
H-consistency, even in the single-expert setting, since they are a straightforward generalization of
those of Mozannar and Sontag [2020] and Verma and Nalisnick [2022].

In summary, the problem of learning to defer in a single-stage scenario has been extensively studied,
but it is often impractical in real-world applications. Post-hoc methods and surrogate losses have
been explored, but the challenge remains to find a surrogate loss that is both consistent and realizable-
consistent. Recent research has made progress in the scenario of learning to defer with multiple
experts but has not achieved realizable H-consistency even in a single-expert setting.

B Examples of two-stage score-based surrogate losses

Example: `2 = `exp. For `2(hd, x, y) = `exp(hd, x, y) = ∑y′≠y e
hd(x,y

′
)−hd(x,y), by (3), we have

Lhp(hd, x, y)

= 1hp(x)=y `2(hd, x,0) +
ne

∑
j=1

c̄j(x, y)`2(hd, x, j)

= 1hp(x)=y ∑
y′≠0

ehd(x,y
′
)−hd(x,0) +

ne

∑
j=1

c̄j(x, y) ∑
y′≠j

ehd(x,y
′
)−hd(x,j)

= 1hp(x)=y

ne

∑
i=1

eh(x,n+i)−maxy∈Y h(x,y) +
ne

∑
j=1

c̄j(x, y)
⎡
⎢
⎢
⎢
⎣

ne

∑
i=1,i≠j

eh(x,n+i)−h(x,n+j) + emaxy∈Y h(x,y)−h(x,n+j)
⎤
⎥
⎥
⎥
⎦
.

Example: `2 = `log. For `2(hd, x, y) = `log(hd, x, y) = log(∑y′∈Y∪{0} e
hd(x,y

′
)−hd(x,y)), by (3), we

have

Lhp(hd, x, y)

= 1hp(x)=y `2(hd, x,0) +
ne

∑
j=1

c̄j(x, y)`2(hd, x, j)

= 1hp(x)=y log
⎛

⎝
∑

y′∈Y∪{0}

ehd(x,y
′
)−hd(x,0)

⎞

⎠
+
ne

∑
j=1

c̄j(x, y) log
⎛

⎝
∑

y′∈Y∪{0}

ehd(x,y
′
)−hd(x,j)

⎞

⎠

= −1hp(x)=y log(
emaxy∈Y h(x,y)

emaxy∈Y h(x,y) +∑
ne
i=1 e

h(x,n+i)
) −

ne

∑
j=1

c̄j(x, y) log(
eh(x,n+j)

emaxy∈Y h(x,y) +∑
ne
i=1 e

h(x,n+i)
).

Example: `2 = `gce. For `2(hd, x, y) = `gce(hd, x, y) =
1
α
[1 − [ ehd(x,y)

∑y′∈Y∪{0} e
hd(x,y

′
)
]
α

], α ∈ (0,1), by

(3), we have

Lhp(hd, x, y)

= 1hp(x)=y `2(hd, x,0) +
ne

∑
j=1

c̄j(x, y)`2(hd, x, j)

= 1hp(x)=y
1

α

⎡
⎢
⎢
⎢
⎢
⎣

1 −

⎡
⎢
⎢
⎢
⎢
⎣

ehd(x,0)

∑y′∈Y∪{0} e
hd(x,y′)

⎤
⎥
⎥
⎥
⎥
⎦

α⎤
⎥
⎥
⎥
⎥
⎦

+
ne

∑
j=1

c̄j(x, y)
1

α

⎡
⎢
⎢
⎢
⎢
⎣

1 −

⎡
⎢
⎢
⎢
⎢
⎣

ehd(x,j)

∑y′∈Y∪{0} e
hd(x,y′)

⎤
⎥
⎥
⎥
⎥
⎦

α⎤
⎥
⎥
⎥
⎥
⎦

= 1hp(x)=y
1

α
[1 − [

emaxy∈Y h(x,y)

emaxy∈Y h(x,y) +∑
ne
i=1 e

h(x,n+i)
]

α

] +
ne

∑
j=1

c̄j(x, y)
1

α
[1 − [

eh(x,n+j)

emaxy∈Y h(x,y) +∑
ne
i=1 e

h(x,n+i)
]

α

].
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Example: `2 = `mae. For `2(hd, x, y) = `mae(hd, x, y) = 1 − ehd(x,y)

∑y′∈Y∪{0} e
hd(x,y

′
)
, by (3), we have

Lhp(hd, x, y)

= 1hp(x)=y `2(hd, x,0) +
ne

∑
j=1

c̄j(x, y)`2(hd, x, j)

= 1hp(x)=y

⎛

⎝
1 −

ehd(x,0)

∑y′∈Y∪{0} e
hd(x,y′)

⎞

⎠
+
ne

∑
j=1

c̄j(x, y)
⎛

⎝
1 −

ehd(x,j)

∑y′∈Y∪{0} e
hd(x,y′)

⎞

⎠

= 1hp(x)=y[1 −
emaxy∈Y h(x,y)

emaxy∈Y h(x,y) +∑
ne
i=1 e

h(x,n+i)
] +

ne

∑
j=1

c̄j(x, y)[1 −
eh(x,n+j)

emaxy∈Y h(x,y) +∑
ne
i=1 e

h(x,n+i)
].

C Examples of two-stage predictor-rejector surrogate losses

Example: `2 = `exp. For `2(r, x, y) = `exp(r, x, y) = ∑y′≠y e
r(x,y′)−r(x,y), by (5), we have

Lh(r, x, y)

= 1h(x)=y `2(r, x,0) +
ne

∑
j=1

c̄j(x, y)`2(r, x, j)

= 1h(x)=y ∑
y′≠0

er(x,y
′
)−r(x,0)

+
ne

∑
j=1

c̄j(x, y) ∑
y′≠j

er(x,y
′
)−r(x,j)

= 1h(x)=y

ne

∑
i=1

e−ri(x) +
ne

∑
j=1

c̄j(x, y)
⎡
⎢
⎢
⎢
⎣

ne

∑
i=1,i≠j

erj(x)−ri(x) + erj(x)
⎤
⎥
⎥
⎥
⎦
.

Example: `2 = `log. For `2(r, x, y) = `log(r, x, y) = log(∑y′∈Y∪{0} e
r(x,y′)−r(x,y)), by (5), we have

Lh(r, x, y)

= 1h(x)=y `2(r, x,0) +
ne

∑
j=1

c̄j(x, y)`2(r, x, j)

= 1h(x)=y log
⎛

⎝
∑

y′∈Y∪{0}

er(x,y
′
)−r(x,0)⎞

⎠
+
ne

∑
j=1

c̄j(x, y) log
⎛

⎝
∑

y′∈Y∪{0}

er(x,y
′
)−r(x,j)⎞

⎠

= −1h(x)=y log(
1

1 +∑
ne
i=1 e

−ri(x)
) −

ne

∑
j=1

c̄j(x, y) log(
e−rj(x)

1 +∑
ne
i=1 e

−ri(x)
).

Example: `2 = `gce. For `2(r, x, y) = `gce(r, x, y) =
1
α
[1 − [ er(x,y)

∑y′∈Y∪{0} e
r(x,y′) ]

α

], α ∈ (0,1), by (5),

we have

Lh(r, x, y)

= 1h(x)=y `2(r, x,0) +
ne

∑
j=1

c̄j(x, y)`2(r, x, j)

= 1h(x)=y
1

α
[1 − [

er(x,0)

∑y′∈Y∪{0} e
r(x,y′)

]

α

] +
ne

∑
j=1

c̄j(x, y)
1

α
[1 − [

er(x,j)

∑y′∈Y∪{0} e
r(x,y′)

]

α

]

= 1h(x)=y
1

α
[1 − [

1

1 +∑
ne
i=1 e

−ri(x)
]

α

] +
ne

∑
j=1

c̄j(x, y)
1

α
[1 − [

e−rj(x)

1 +∑
ne
i=1 e

−ri(x)
]

α

].
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Example: `2 = `mae. For `2(r, x, y) = `mae(r, x, y) = 1 − er(x,y)

∑y′∈Y∪{0} e
r(x,y′) , by (5), we have

Lh(r, x, y)

= 1h(x)=y `2(r, x,0) +
ne

∑
j=1

c̄j(x, y)`2(r, x, j)

= 1h(x)=y (1 −
er(x,0)

∑y′∈Y∪{0} e
r(x,y′)

) +
ne

∑
j=1

c̄j(x, y)(1 −
er(x,j)

∑y′∈Y∪{0} e
r(x,y′)

)

= 1h(x)=y[1 −
1

1 +∑
ne
i=1 e

−ri(x)
] +

ne

∑
j=1

c̄j(x, y)[1 −
e−rj(x)

1 +∑
ne
i=1 e

−ri(x)
].

D Proof of H-consistency bounds for score-based two-stage surrogate losses
(Theorem 1)

Theorem 1 (H-consistency bounds for score-based two-stage surrogates). Assume that `1 admits
an Hp-consistency bound and `2 admits an Hd-consistency bound with respect to the multi-class
zero-one classification loss `0−1 respectively. Thus, there are non-decreasing concave functions Γ1

and Γ2 such that, for all hp ∈Hp and hd ∈Hd, we have

E`0−1(hp) − E∗`0−1(Hp) +M`0−1(Hp) ≤ Γ1(E`1(hp) − E∗`1(Hp) +M`1(Hp))

E`0−1(hd) − E∗`0−1(Hd) +M`0−1(Hd) ≤ Γ2(E`2(hd) − E∗`2(Hd) +M`2(Hd)).

Then, the following holds for all h ∈H:

ELdef
(h) − E∗Ldef

(H) +MLdef
(H)

≤ Γ1(E`1(hp) − E∗`1(Hp) +M`1(Hp)) + (1 +
ne

∑
j=1

cj)Γ2(
ELhp

(hd) − E∗Lhp
(Hd) +MLhp

(Hd)

∑
ne
j=1 cj

).

Furthermore, constant factors (1 +∑
ne
j=1 cj) and 1

∑
ne
j=1 cj

can be removed when Γ2 is linear.

Proof. If h(x) ∈ [n], then h(x) = hp(x). Thus, the learning to defer loss can be expressed as follows:

Ldef(h,x, y) = 1h(x)≠y1h(x)∈[n] +
ne

∑
j=1

cj(x, y)1h(x)=n+j

= 1hp(x)≠y1h(x)∈[n] +
ne

∑
j=1

cj(x, y)1h(x)=n+j .

Let c̄0(x, y) = 1hp(x)=y . Since h = (hp, hd), we can rewrite ELdef
(h) − E∗Ldef

(H) +MLdef
(H) as

ELdef
(h) − E∗Ldef

(H) +MLdef
(H)

= EX[CLdef
(h,x) − C∗Ldef

(H, x)]

= EX[CLdef
(h,x) − inf

hd∈Hd

CLdef
(h,x) + inf

hd∈Hd

CLdef
(h,x) − C∗Ldef

(H, x)]

= EX[CLdef
(h,x) − inf

hd∈Hd

CLdef
(h,x)] +EX[ inf

hd∈Hd

CLdef
(h,x) − C∗Ldef

(H, x)].

(6)

Let p(x, j) = Ey[c̄j(x,y)]
Ey[∑nej=0 c̄j(x,y)]

for any j ∈ {0, . . . , ne}. Note that p(x, ⋅) is the probability vector on

the label space {0, . . . , ne}. For any h ∈ H, we define h as its augmented hypothesis: h(x,0) =
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maxy∈Y h(x, y), h(x,1) = h(x,1), . . . , h(x,ne) = h(x,ne). By the assumptions, we have

CLdef
(h,x) − inf

hd∈Hd

CLdef
(h,x)

= E
y

⎡
⎢
⎢
⎢
⎣
1hp(x)≠y1h(x)∈[n] +

ne

∑
j=1

cj(x, y)1h(x)=n+j

⎤
⎥
⎥
⎥
⎦
− inf
hd∈Hd

E
y

⎡
⎢
⎢
⎢
⎣
1hp(x)≠y1h(x)∈[n] +

ne

∑
j=1

cj(x, y)1h(x)=n+j

⎤
⎥
⎥
⎥
⎦

= E
y

⎡
⎢
⎢
⎢
⎣

ne

∑
j=0

c̄j(x, y)
⎤
⎥
⎥
⎥
⎦
×
⎡
⎢
⎢
⎢
⎣

ne

∑
j=0

p(x, j)`0−1(h,x, j) − inf
hd∈Hd

ne

∑
j=0

p(x, j)`0−1(h,x, j)
⎤
⎥
⎥
⎥
⎦

≤ E
y

⎡
⎢
⎢
⎢
⎣

ne

∑
j=0

c̄j(x, y)
⎤
⎥
⎥
⎥
⎦
× Γ2

⎡
⎢
⎢
⎢
⎣

ne

∑
j=0

p(x, j)`2(h,x, j) − inf
hd∈Hd

ne

∑
j=0

p(x, j)`2(h,x, j)
⎤
⎥
⎥
⎥
⎦

(By Hd-consistency bounds of `2 under assumption, λ = maxy∈Y h(x, y))

= E
y

⎡
⎢
⎢
⎢
⎣

ne

∑
j=0

c̄j(x, y)
⎤
⎥
⎥
⎥
⎦
Γ2

⎛

⎝

Ey[Lhp(hd, x, y)] − infhd∈Hd
Ey[Lhp(hd, x, y)]

Ey[∑nej=0 c̄j(x, y)]

⎞

⎠

(p(x, j) = Ey[c̄j(x,y)]
Ey[∑nej=0 c̄j(x,y)]

, h(x,0) = maxy∈Y h(x, y) and formulation (3))

= E
y

⎡
⎢
⎢
⎢
⎣

ne

∑
j=0

c̄j(x, y)
⎤
⎥
⎥
⎥
⎦
Γ2

⎛

⎝

CLhp
(hd, x) − C∗Lhp

(Hd, x)

Ey[∑nej=0 c̄j(x, y)]

⎞

⎠

≤

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Γ2(CLhp
(hd, x) − C∗Lhp

(Hd, x)) when Γ2 is linear

(1 +∑
ne
j=1 cj)Γ2(

CLhp
(hd,x)−C

∗

Lhp
(Hd,x)

∑
ne
j=1 cj

) otherwise

(∑nej=1 cj ≤ Ey[∑nej=0 c̄j(x, y)] ≤ 1 +∑
ne
j=1 cj and Γ2 is non-decreasing)

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Γ2(∆CLhp ,Hd
(hd, x)) when Γ2 is linear

(1 +∑
ne
j=1 cj)Γ2(

∆CLhp
,Hd

(hd,x)

∑
ne
j=1 cj

) otherwise

and

inf
hd∈Hd

CLdef
(h,x) − C∗Ldef

(H, x)

= inf
hd∈Hd

CLdef
(h,x) − inf

hp∈Hp,hd∈Hd

CLdef
(h,x)

= inf
hd∈Hd

E
y

⎡
⎢
⎢
⎢
⎣
1hp(x)≠y1h(x)∈[n] +

ne

∑
j=1

cj(x, y)1h(x)=n+j

⎤
⎥
⎥
⎥
⎦

− inf
hp∈Hp,hd∈Hd

E
y

⎡
⎢
⎢
⎢
⎣
1hp(x)≠y1h(x)∈[n] +

ne

∑
j=1

cj(x, y)1h(x)=n+j

⎤
⎥
⎥
⎥
⎦

= inf
hd∈Hd

E
y

⎡
⎢
⎢
⎢
⎣
1hp(x)≠y1h(x)∈[n] +

ne

∑
j=1

cj(x, y)1h(x)=n+j

⎤
⎥
⎥
⎥
⎦

− inf
hd∈Hd

E
y

⎡
⎢
⎢
⎢
⎣

inf
hp∈Hp

1hp(x)≠y1h(x)∈[n] +
ne

∑
j=1

cj(x, y)1h(x)=n+j

⎤
⎥
⎥
⎥
⎦

= min{E
y
[1hp(x)≠y],min

j∈[p]
E
y
[cj(x, y)]} −min{ inf

hp∈Hp

E
y
[1hp(x)≠y],min

j∈[p]
E
y
[cj(x, y)]}

≤ E
y
[1hp(x)≠y] − inf

hp∈Hp

E
y
[1hp(x)≠y]

= C`0−1(hp, x) − C∗`0−1(Hp, x)

= ∆C`0−1,Hp(hp, x)

≤ Γ1(∆C`1,Hp(hp, x)). (By Hp-consistency bounds of ` under assumption)
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Therefore, by (6), we obtain

ELdef
(h) − E∗Ldef

(H) +MLdef
(H)

≤

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

EX[Γ2(∆CLhp ,Hd
(hd, x))] +EX[Γ1(∆C`1,Hp(hp, x))] when Γ2 is linear

(1 +∑
ne
j=1 cj)EX[Γ2(

∆CLhp
,Hd

(hd,x)

∑
ne
j=1 cj

)] +EX[Γ1(∆C`1,Hp(hp, x))] otherwise

≤

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Γ2(EX[∆CLhp ,Hd
(hd, x)]) + Γ1(EX[∆C`1,Hp(hp, x)]) when Γ2 is linear

(1 +∑
ne
j=1 cj)Γ2(

1
∑
ne
j=1 cj

EX[∆CLhp ,Hd
(hd, x)]) + Γ1(EX[∆C`1,Hp(hp, x)]) otherwise

(Γ1 and Γ2 are concave)

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Γ1(E`1(hp) − E∗`1(Hp) +M`1(Hp)) + Γ2(ELhp
(hd) − E∗Lhp

(Hd) +MLhp
(Hd)) when Γ2 is linear

Γ1(E`1(hp) − E∗`1(Hp) +M`1(Hp)) + (1 +∑
ne
j=1 cj)Γ2(

ELhp
(hd)−E

∗

Lhp
(Hd)+MLhp

(Hd)

∑
ne
j=1 cj

) otherwise,

which completes the proof.

E Proof of H-consistency bounds for standard surrogate loss functions
(Theorem 3)

Recall that for a hypothesis h∶X × Y → R, we define h as its augmented hypothesis: h(⋅,0) =

λ,h(⋅,1) = h(x,1), . . . , h(⋅, n) = h(x,n) with some constant λ ∈ R. We define H as the hypothesis
set that consists of all such augmented hypotheses of H: H = {h ∶ h ∈H}. The prediction associated
by h ∈H to an input x ∈ X is denoted by h(x) and defined as the element in Y ∪ {0} with the highest
score, h(x) = argmaxy∈Y∪{0} h(x, y), with an arbitrary but fixed deterministic strategy for breaking
ties. For any x ∈ X and label space Y ∪ {0}, we will denote, by H(x) the set of labels generated
by hypotheses in H: H(x) = {h(x)∶h ∈H}. By [Awasthi et al., 2022a, Lemma 3] with label space
Y ∪ {0} and a conditional probability vector p(x, ⋅) on Y ∪ {0}, the minimal conditional `0−1-loss
and the corresponding calibration gap can be characterized as follows.

Lemma 8. For any x ∈ X, the minimal conditional `0−1-risk and the calibration gap for `0−1 can be
expressed as follows:

C∗`0−1(x) = 1 − max
y∈H(x)

p(x, y)

∆C`0−1(h,x) = max
y∈H(x)

p(x, y) − p(x,h(x)).

E.1 Multinomial logistic loss

Theorem 9 (H-consistency bound for multinomial logistic loss). Assume that H is symmetric and
complete. Then, for any λ ∈ R, hypothesis h ∈H and any distribution,

E`0−1(h) − E∗`0−1(H) ≤
√

2(E`log(h) − E∗`log(H) +M`log(H))

1
2
−M`0−1(H).

Proof. For the multinomial logistic loss `log, the conditional `log-risk can be expressed as follows:

C`log(h,x)) = ∑
y∈Y∪{0}

p(x, y) log
⎛

⎝
∑

y′∈Y∪{0}

eh(x,y
′
)−h(x,y)⎞

⎠
= − ∑

y∈Y∪{0}

p(x, y) log(S(x, y))

where we let S(x, y) = eh(x,y)

∑y′∈Y∪{0} e
h(x,y′)

∈ [0,1] for any y ∈ Y ∪ {0} with the constraint that

∑y∈Y∪{0} S(x, y) = 1. Let ymax = argmaxy∈Y∪{0} p(x, y), where we choose the label with the
same deterministic strategy for breaking ties as that of h(x). For any h ∈H such that h(x) ≠ ymax

and x ∈ X, by the symmetry and completeness of H, we can always find a family of hypotheses
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{hµ ∶ µ ∈ [−S(x, ymax),S(x,h(x))]} ⊂H such that Sµ(x, ⋅) = ehµ(x,⋅)

∑y′∈Y∪{0} e
hµ(x,y′)

take the following

values:

Sµ(x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

S(x, y) if y /∈ {ymax,h(x)}

S(x, ymax) + µ if y = h(x)

S(x,h(x)) − µ if y = ymax.

Note that Sµ satisfies the constraint:

∑
y∈Y∪{0}

Sµ(x, y) = ∑
y∈Y∪{0}

S(x, y) = 1, ∀µ ∈ [−S(x, ymax),S(x,h(x))].

Let h ∈ H be a hypothesis such that h(x) ≠ ymax. By the definition and using the fact that
H(x) = Y ∪ {0} when H is symmetric, we obtain

∆C`log,H(h,x)

= C`log(h,x) − C∗`log(H, x)

≥ C`log(h,x) − inf
µ∈[−S(x,ymax),S(x,h(x))]

C`log(hµ, x)

= sup
µ∈[−S(x,ymax),S(x,h(x))]

{p(x, ymax)[− log(S(x, ymax)) + log(S(x,h(x)) − µ)]

+ p(x,h(x))[− log(S(x,h(x))) + log(S(x, ymax) + µ)]}

Differentiating with respect to µ yields the optimum value µ∗ = p(x,h(x))S(x,h(x))−p(x,ymax)S(x,ymax)

p(x,ymax)+p(x,h(x))
.

Plugging that value in the inequality gives:

∆C`log,H(h,x) ≥ p(x, ymax) log
[S(x,h(x)) + S(x, ymax)]p(x, ymax)

S(x, ymax)[p(x, ymax) + p(x,h(x))]

+ p(x,h(x)) log
[S(x,h(x)) + S(x, ymax)]p(x,h(x))

S(x,h(x))[p(x, ymax) + p(x,h(x))]
.

Differentiating with respect to S to show that the minimum is attained for S(x,h(x)) = S(x, ymax),
which implies

∆C`log,H(h,x) ≥ p(x, ymax) log
2p(x, ymax)

p(x, ymax) + p(x,h(x))
+ p(x,h(x)) log

2p(x,h(x))

p(x, ymax) + p(x,h(x))
.

By Pinsker’s inequality, we have, for a, b ∈ [0,1], a log 2a
a+b

+b log 2b
a+b

≥
(a−b)2

2(a+b)
. Using this inequality,

we obtain:

∆C`log,H(h,x) ≥
(p(x,h(x)) − p(x, ymax))

2

2(p(x,h(x)) + p(x, ymax))

≥
(p(x,h(x)) − p(x, ymax))

2

2
(0 ≤ p(x,h(x)) + p(x, ymax) ≤ 1)

=
1

2
(∆C`0−1,H(h,x))

2
. (by Lemma 8 and H(x) = Y ∪ {0})

Since the function t2

2
is convex, by Jensen’s inequality, we obtain for any hypothesis h ∈H and any

distribution,

(EX[∆C`0−1,H(h,x)])
2

2
≤ E
X

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆C`0−1,H(h,x)
2

2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ E
X
[∆C`log,H(h,x)],

which leads to

E`0−1(h) − E∗`0−1(H) ≤
√

2(E`log(h) − E∗`log(H) +M`log(H))

1
2
−M`0−1(H).
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E.2 Sum exponential loss

Theorem 10 (H-consistency bound for sum exponential loss). Assume that H is symmetric and
complete. Then, for any λ ∈ R, hypothesis h ∈H and any distribution,

E`0−1(h) − E∗`0−1(H) ≤
√

2(E`exp(h) − E∗`exp(H) +M`exp(H))
1
2
−M`0−1(H).

Proof. For the sum exponential loss `exp, the conditional `exp-risk can be expressed as follows:

C`exp(h,x)) = ∑
y∈Y∪{0}

p(x, y)
⎛

⎝
∑

y′∈Y∪{0}

eh(x,y
′
)−h(x,y)⎞

⎠
− 1 = ∑

y∈Y∪{0}

p(x, y)

S(x, y)
− 1

where we let S(x, y) = eh(x,y)

∑y′∈Y∪{0} e
h(x,y′)

∈ [0,1] for any y ∈ Y ∪ {0} with the constraint that

∑y∈Y∪{0} S(x, y) = 1. Let ymax = argmaxy∈Y∪{0} p(x, y), where we choose the label with the
highest index under the natural ordering of labels as the tie-breaking strategy. For any h ∈H such
that h(x) ≠ ymax and x ∈ X, by the symmetry and completeness of H, we can always find a family of

hypotheses {hµ∶µ ∈ [−S(x, ymax),S(x,h(x))]} ⊂H such that Sµ(x, ⋅) = ehµ(x,⋅)

∑y′∈Y∪{0} e
hµ(x,y′)

take the

following values:

Sµ(x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

S(x, y) if y /∈ {ymax,h(x)}

S(x, ymax) + µ if y = h(x)

S(x,h(x)) − µ if y = ymax.

Note that Sµ satisfies the constraint:

∑
y∈Y

Sµ(x, y) = ∑
y∈Y

S(x, y) = 1, ∀µ ∈ [−S(x, ymax),S(x,h(x))].

Let h ∈ H be a hypothesis such that h(x) ≠ ymax. By the definition and using the fact that
H(x) = Y ∪ {0} when H is symmetric, we obtain

∆C`exp,H(h,x)

= C`exp(h,x) − C∗`exp(H, x)

≥ C`exp(h,x) − inf
µ∈[−S(x,ymax),S(x,h(x))]

C`exp(hµ, x)

= sup
µ∈[−S(x,ymax),S(x,h(x))]

{p(x, ymax)[
1

S(x, ymax)
−

1

S(x,h(x)) − µ
]

+ p(x,h(x))[
1

S(x,h(x))
−

1

S(x, ymax) + µ
]}.

Differentiating with respect to µ yields the optimal value

µ∗ =

√

p(x,h(x))S(x,h(x)) −
√
p(x, ymax)S(x, ymax)

√
p(x, ymax) +

√

p(x,h(x))
.

Plugging that value in the inequality gives:

∆C`exp,H(h,x) ≥
p(x, ymax)

S(x, ymax)
+
p(x,h(x))

S(x,h(x))
−

(
√
p(x, ymax) +

√

p(x,h(x)))
2

S(x, ymax) + S(x,h(x))
.
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Differentiating with respect to S to show that the minimum is attained for S(x,h(x)) = S(x, ymax) =
1
2

, which implies

∆C`exp,H(h,x) ≥ (
√
p(x, ymax) −

√

p(x,h(x)))
2

=
(p(x,h(x)) − p(x, ymax))

2

(

√

p(x,h(x)) +
√
p(x, ymax))

2
.

By the concavity of the square-root function, for all a, b ∈ [0,1], we have 1
2
(
√
a +

√
b) ≤

√
1
2
(a + b),

thus we can write

∆C`exp,H(h,x) ≥
(p(x,h(x)) − p(x, ymax))

2

2(p(x,h(x)) + p(x, ymax))

≥
(p(x,h(x)) − p(x, ymax))

2

2
(p(x,h(x)) + p(x, ymax) ≤ 1)

=
1

2
(∆C`0−1,H(h,x))

2
. (by Lemma 8 and H(x) = Y ∪ {0})

Since the function t2

2
is convex, by Jensen’s inequality, we obtain for any hypothesis h ∈H and any

distribution,

(EX[∆C`0−1,H(h,x)])
2

2
≤ E
X

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆C`0−1,H(h,x)
2

2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ E
X
[∆C`exp,H(h,x)],

which leads to

E`0−1(h) − E∗`0−1(H) ≤
√

2(E`exp(h) − E∗`exp(H) +M`exp(H))
1
2
−M`0−1(H).

E.3 Generalized cross-entropy loss

Theorem 11 (H-consistency bound for generalized cross-entropy loss). Assume that H is sym-
metric and complete. Then, for any λ ∈ R, hypothesis h ∈H and any distribution,

E`0−1(h) − E∗`0−1(H) ≤
√

2(n + 1)α(E`gce(h) − E∗`gce(H) +M`gce(H))
1
2
−M`0−1(H).

Proof. For the generalized cross-entropy loss `gce, the conditional `gce-risk can be expressed as
follows:

C`gce(h,x)) = ∑
y∈Y∪{0}

p(x, y)
1

α

⎡
⎢
⎢
⎢
⎢
⎣

1 −

⎡
⎢
⎢
⎢
⎢
⎣

eh(x,y)

∑y′∈Y∪0 e
h(x,y′)

⎤
⎥
⎥
⎥
⎥
⎦

α⎤
⎥
⎥
⎥
⎥
⎦

=
1

α
∑

y∈Y∪{0}

p(x, y)(1 − S(x, y)α)

where we let S(x, y) = eh(x,y)

∑y′∈Y∪{0} e
h(x,y′)

∈ [0,1] for any y ∈ Y ∪ {0} with the constraint that

∑y∈Y∪{0} S(x, y) = 1. Let ymax = argmaxy∈Y∪{0} p(x, y), where we choose the label with the
same deterministic strategy for breaking ties as that of h(x). For any h ∈H such that h(x) ≠ ymax

and x ∈ X, by the symmetry and completeness of H, we can always find a family of hypotheses

{hµ ∶ µ ∈ [−S(x, ymax),S(x,h(x))]} ⊂H such that Sµ(x, ⋅) = ehµ(x,⋅)

∑y′∈Y∪{0} e
hµ(x,y′)

take the following

values:

Sµ(x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

S(x, y) if y /∈ {ymax,h(x)}

S(x, ymax) + µ if y = h(x)

S(x,h(x)) − µ if y = ymax.
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Note that Sµ satisfies the constraint:

∑
y∈Y∪{0}

Sµ(x, y) = ∑
y∈Y∪{0}

S(x, y) = 1, ∀µ ∈ [−S(x, ymax),S(x,h(x))].

Let h ∈ H be a hypothesis such that h(x) ≠ ymax. By the definition and using the fact that
H(x) = Y ∪ {0} when H is symmetric, we obtain

∆C`gce,H(h,x)

= C`gce(h,x) − C∗`gce(H, x)

≥ C`gce(h,x) − inf
µ∈[−S(x,ymax),S(x,h(x))]

C`gce(hµ, x)

=
1

α
sup

µ∈[−S(x,ymax),S(x,h(x))]

{p(x, ymax)[−S(x, ymax)
α
+ (S(x,h(x)) − µ)

α
]

+ p(x,h(x))[−S(x,h(x))α + (S(x, ymax) + µ)
α
]}.

Differentiating with respect to µ yields the optimal value

µ∗ =
p(x,h(x))

1
1−α S(x,h(x)) − p(x, ymax)

1
1−α S(x, ymax)

p(x, ymax)
1

1−α + p(x,h(x))
1

1−α

.

Plugging that value in the inequality gives:

∆C`gce,H(h,x) ≥
1

α
(S(x,h(x)) + S(x, ymax))

α
(p(x, ymax)

1
1−α + p(x,h(x))

1
1−α )

1−α

−
1

α
p(x, ymax)S(x, ymax)

α
−

1

α
p(x,h(x))S(x,h(x))α.

Differentiating with respect to S to show that the minimum is attained for S(x,h(x)) = S(x, ymax) =
1
n+1

, which implies

∆C`gce,H(h,x) ≥
1

α(n + 1)α
[2α(p(x, ymax)

1
1−α + p(x,h(x))

1
1−α )

1−α
− p(x, ymax) − p(x,h(x))].

By using the fact that for all a, b ∈ [0,1], 0 ≤ a + b ≤ 1, we have (a
1

1−α +b
1

1−α

2
)

1−α

− a+b
2

≥ α
4
(a − b)2,

thus we can write

∆C`gce,H(h,x) ≥
(p(x,h(x)) − p(x, ymax))

2

2(n + 1)α

=
1

2(n + 1)α
(∆C`0−1,H(h,x))

2
. (by Lemma 8 and H(x) = Y ∪ {0})

Since the function t2

2(n+1)α
is convex, by Jensen’s inequality, we obtain for any hypothesis h ∈H and

any distribution,

(EX[∆C`0−1,H(h,x)])
2

2(n + 1)α
≤ E
X

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆C`0−1,H(h,x)
2

2(n + 1)α

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ E
X
[∆C`gce,H(h,x)]

which leads to

E`0−1(h) − E∗`0−1(H) ≤
√

2(n + 1)α(E`gce(h) − E∗`gce(H) +M`gce(H))
1
2
−M`0−1(H).
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E.4 Mean absolute error loss

Theorem 12 (H-consistency bound for mean absolute error loss). Assume that H is symmetric
and complete. Then, for any λ ∈ R, hypothesis h ∈H and any distribution,

E`0−1(h) − E∗`0−1(H) ≤ (n + 1)(E`mae
(h) − E∗`mae

(H) +M`mae
(H)) −M`0−1(H).

Proof. For the mean absolute error loss `mae, the conditional `mae-risk can be expressed as follows:

C`mae
(h,x)) = ∑

y∈Y∪{0}

p(x, y)
⎛

⎝
1 −

eh(x,y)

∑y′∈Y∪0 e
h(x,y′)

⎞

⎠
= ∑
y∈Y∪{0}

p(x, y)(1 − S(x, y))

where we let S(x, y) = eh(x,y)

∑y′∈Y∪{0} e
h(x,y′)

∈ [0,1] for any y ∈ Y ∪ {0} with the constraint that

∑y∈Y∪{0} S(x, y) = 1. Let ymax = argmaxy∈Y∪{0} p(x, y), where we choose the label with the
same deterministic strategy for breaking ties as that of h(x). For any h ∈H such that h(x) ≠ ymax

and x ∈ X, by the symmetry and completeness of H, we can always find a family of hypotheses

{hµ ∶ µ ∈ [−S(x, ymax),S(x,h(x))]} ⊂H such that Sµ(x, ⋅) = ehµ(x,⋅)

∑y′∈Y∪{0} e
hµ(x,y′)

take the following

values:

Sµ(x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

S(x, y) if y /∈ {ymax,h(x)}

S(x, ymax) + µ if y = h(x)

S(x,h(x)) − µ if y = ymax.

Note that Sµ satisfies the constraint:

∑
y∈Y∪{0}

Sµ(x, y) = ∑
y∈Y∪{0}

S(x, y) = 1, ∀µ ∈ [−S(x, ymax),S(x,h(x))].

Let h ∈ H be a hypothesis such that h(x) ≠ ymax. By the definition and using the fact that
H(x) = Y ∪ {0} when H is symmetric, we obtain

∆C`mae,H
(h,x)

= C`mae
(h,x) − C∗`mae

(H, x)

≥ C`mae
(h,x) − inf

µ∈[−S(x,ymax),S(x,h(x))]
C`mae

(hµ, x)

= sup
µ∈[−S(x,ymax),S(x,h(x))]

{p(x, ymax)[−S(x, ymax) + S(x,h(x)) − µ]

+ p(x,h(x))[−S(x,h(x)) + S(x, ymax) + µ]}.

Differentiating with respect to µ yields the optimum value µ∗ = −S(x, ymax). Plugging that value in
the inequality gives:

∆C`mae,H
(h,x) ≥ p(x, ymax)S(x,h(x)) − p(x,h(x))S(x,h(x)).

Differentiating with respect to S to show that the minimum is attained for S(x,h(x)) = 1
n+1

, which
implies

∆C`mae,H
(h,x) ≥

1

n + 1
(p(x, ymax) − p(x,h(x)))

=
1

n + 1
(∆C`0−1,H(h,x)). (by Lemma 8 and H(x) = Y ∪ {0})

Therefore, we obtain for any hypothesis h ∈H and any distribution,

EX[∆C`0−1,H(h,x)]

n + 1
≤ E
X
[∆C`mae,H

(h,x)],

which leads to
E`0−1(h) − E∗`0−1(H) ≤ (n + 1)(E`mae

(h) − E∗`mae
(H) +M`mae

(H)) −M`0−1(H).
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F Proof of realizable consistency for score-based two-stage surrogate losses
(Theorem 5)

Theorem 5 (Realizable H-consistency for score-based two-stage surrogates). Assume that H is
closed under scaling and cj(x, y) = βj ,∀(x, y) ∈ X × Y. Let `1 and `2 be the logistic loss. Let ĥp be
the minimizer of E`1 and ĥd be the minimizer of ELĥp

such that ELĥp
(ĥd) = minh ELhp

(hd). Then,
the following equality holds for any (H, R) -realizable distribution,

ELdef
(ĥ) = 0, where ĥ = (ĥp, ĥd).

Proof. First, by definition, it is straightforward to see that for any h,x, y, Lhp(hd, x, y) upper bounds
the deferral loss Ldef . Consider a data distribution and costs under which there exists h∗ ∈H such
that ELdef

(h∗) = 0.

Let ĥp be the minimizer of E`1 and ĥd the minimizer of ELĥp
Then, using the fact that Lh upper

bounds the deferral loss Ldef , we have ELdef
(ĥ) ≤ ELĥp

(ĥd).

Next we analyze two cases. If for a point x, deferral occurs, that is there exists j∗ ∈ [ne], such
that h∗(x) = n + j∗, then we must have cj∗ = 0 for all x since the data is realizable and cj∗ is
constant. Therefore, there exists an optimal h∗∗ deferring all the points to the j∗th expert. Then, by
the assumption that H is closed under scaling and the Lebesgue dominated convergence theorem, for
`2 being the logistic loss, ELdef

(ĥ) ≤ ELĥp
(ĥd) ≤ limτ→+∞ ELh∗∗p

(τh∗∗d ) = 0, where we used the fact

that in the limit of τ → +∞ the logistic loss term `2(h
∗∗

d , x, j) corresponding to j ≠ j∗ is zero.

On the other hand, if no deferral occurs for any point, that is h∗(x) ∈ [n] for any x, then we must have
1h∗p(x)≠y

= 0 for all (x, y) since the data is realizable. Using the fact that H is closed under scaling and
that the logistic loss is realizable H-consistent in the standard classification, we obtain 1ĥp(x)≠y

= 0

for all (x, y). Then, by the assumption that H is closed under scaling and the Lebesgue dominated
convergence theorem, for `2 being the logistic loss, ELdef

(ĥ) ≤ ELĥp
(ĥd) ≤ limτ→+∞ ELh∗p

(τh∗d) = 0,

where we used the fact that in the limit of τ → +∞ the logistic loss term `2(h
∗

d, x, j) corresponding
to j ≠ 0 is zero.

Therefore, the optimal solution from minimizing score-based two-stage surrogates leads to a zero
error solution of the deferral loss, which proves that the score-based two-stage surrogate loss is
realizable consistent.

G Proof of (H,R)-consistency bounds for predictor-rejector two-stage
surrogate losses (Theorem 6)

Theorem 6 ((H,R)-consistency bounds for predictor-rejector two-stage surrogates). Assume
that `1 admits an H-consistency bound and `2 admits an R-consistency bound with respect to the
multi-class zero-one classification loss `0−1 respectively. Thus, there are non-decreasing concave
functions Γ1 and Γ2 such that, for all h ∈H and r ∈ R, we have

E`0−1(h) − E∗`0−1(H) +M`0−1(H) ≤ Γ1(E`1(h) − E∗`1(H) +M`1(H)

E`0−1(r) − E∗`0−1(R) +M`0−1(R) ≤ Γ2(E`2(r) − E∗`2(R) +M`2(R)).

Then, the following holds for all h ∈H and r ∈ R:

ELdef
(h, r) − E∗Ldef

(H,R) +MLdef
(H,R)

≤ Γ1(E`1(h) − E∗`1(H) +M`1(H)) +
⎛

⎝
1 +

ne

∑
j=1

cj
⎞

⎠
Γ2(

ELh(r) − E∗Lh(R) +MLh(R)

∑
ne
j=1 cj

),

where the constant factors (1 +∑
ne
j=1 cj) and 1

∑
ne
j=1 cj

can be removed when Γ2 is linear.
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Proof. By definition,

Ldef(h, r, x, y) = 1h(x)≠y1r(x)=0 +
ne

∑
j=1

cj(x, y)1r(x)=j .

Let c̄0(x, y) = 1h(x)=y . We can rewrite ELdef
(h, r) − E∗Ldef

(H,R) +MLdef
(H,R) as

ELdef
(h, r) − E∗Ldef

(H,R) +MLdef
(H,R)

= EX[CLdef
(h, r, x) − C∗Ldef

(H,R, x)]

= EX[CLdef
(h, r, x) − inf

r∈R
CLdef

(h, r, x) + inf
r∈R

CLdef
(h, r, x) − C∗Ldef

(H,R, x)]

= EX[CLdef
(h, r, x) − inf

r∈R
CLdef

(h, r, x)] +EX[inf
r∈R

CLdef
(h, r, x) − C∗Ldef

(H,R, x)]

(7)

Let p(x, j) = Ey[c̄j(x,y)]
∑
ne
j=0 Ey[c̄j(x,y)] for any j ∈ {0, . . . , ne}. Note that p(x, ⋅) is the probability vector on

the label space {0, . . . , ne}. For any r ∈ R, we define r as its augmented hypothesis: r(x,0) =

0, r(x,1) = −r1(x), . . . , r(x,ne) = −rne(x). By the assumptions, we have

CLdef
(h, r, x) − inf

r∈R
CLdef

(h, r, x)

= E
y

⎡
⎢
⎢
⎢
⎣
1h(x)≠y1r(x)=0 +

ne

∑
j=1

cj(x, y)1r(x)=j

⎤
⎥
⎥
⎥
⎦
− inf
r∈R

E
y

⎡
⎢
⎢
⎢
⎣
1h(x)≠y1r(x)=0 +

ne

∑
j=1

cj(x, y)1r(x)=j

⎤
⎥
⎥
⎥
⎦

= E
y

⎡
⎢
⎢
⎢
⎣

ne

∑
j=0

c̄j(x, y)
⎤
⎥
⎥
⎥
⎦
×
⎡
⎢
⎢
⎢
⎣

ne

∑
j=0

p(x, j)`0−1(r, x, j) − inf
r∈R

ne

∑
j=0

p(x, j)`0−1(r, x, j)
⎤
⎥
⎥
⎥
⎦

≤ E
y

⎡
⎢
⎢
⎢
⎣

ne

∑
j=0

c̄j(x, y)
⎤
⎥
⎥
⎥
⎦
× Γ2

⎡
⎢
⎢
⎢
⎣

ne

∑
j=0

p(x, j)`2(r, x, j) − inf
r∈R

ne

∑
j=0

p(x, j)`2(r, x, j)
⎤
⎥
⎥
⎥
⎦

(By R-consistency bounds of `2 under assumption)

= E
y

⎡
⎢
⎢
⎢
⎣

ne

∑
j=0

c̄j(x, y)
⎤
⎥
⎥
⎥
⎦
Γ2

⎛

⎝

Ey[Lh(r, x, y)] − infr∈REy[Lh(r, x, y)]
Ey[∑nej=0 c̄j(x, y)]

⎞

⎠

(p(x, j) = Ey[c̄j(x,y)]
∑
ne
j=0 Ey[c̄j(x,y)] and formulation (5))

≤

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Γ2(CLh(r, x) − C∗Lh(R, x)) when Γ2 is linear

(1 +∑
ne
j=1 cj)Γ2(

CLh
(r,x)−C∗Lh

(R,x)

∑
ne
j=1 cj

) otherwise

(∑nej=1 cj ≤ Ey[∑nej=0 c̄j(x, y)] ≤ 1 +∑
ne
j=1 cj and Γ2 is non-decreasing)

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Γ2(∆CLh,R(r, x)) when Γ2 is linear

(1 +∑
ne
j=1 cj)Γ2(

∆CLh,R
(r,x)

∑
ne
j=1 cj

) otherwise

and

inf
r∈R

CLdef
(h, r, x) − C∗Ldef

(H,R, x)

= inf
r∈R

CLdef
(h, r, x) − inf

h∈H,r∈R
CLdef

(h, r, x)

= inf
r∈R

E
y

⎡
⎢
⎢
⎢
⎣
1h(x)≠y1r(x)=0 +

ne

∑
j=1

cj(x, y)1r(x)=j

⎤
⎥
⎥
⎥
⎦
− inf
h∈H,r∈R

E
y

⎡
⎢
⎢
⎢
⎣
1h(x)≠y1r(x)=0 +

ne

∑
j=1

cj(x, y)1r(x)=j

⎤
⎥
⎥
⎥
⎦

= min{E
y
[1h(x)≠y],E

y
[cj(x, y)]} −min{ inf

h∈H
E
y
[1h(x)≠y],E

y
[cj(x, y)]}

≤ E
y
[1h(x)≠y] − inf

h∈H
E
y
[1h(x)≠y]

= C`0−1(h,x) − C∗`0−1(H, x)

= ∆C`0−1(h,x)

≤ Γ1(∆C`(h,x)). (By H-consistency bounds of ` under assumption)
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Therefore, by (7), we obtain

ELdef
(h, r) − E∗Ldef

(H,R) +MLdef
(H,R)

≤

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

EX[Γ2(∆CLh,R(r, x))] +EX[Γ1(∆C`(h,x))] when Γ2 is linear

(1 +∑
ne
j=1 cj)EX[Γ2(

∆CLh,R
(r,x)

∑
ne
j=1 cj

)] +EX[Γ1(∆C`(h,x))] otherwise

≤

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Γ2(EX[Γ2(∆CLh,R(r, x))]) + Γ1(EX[∆C`(h,x)]) when Γ2 is linear

(1 +∑
ne
j=1 cj)Γ2(EX[

∆CLh,R
(r,x)

∑
ne
j=1 cj

]) + Γ1(EX[∆C`(h,x)]) otherwise

(Γ1 and Γ2 are concave)

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Γ1(E`(h) − E∗` (H) +M`(H)) + Γ2(ELh(r) − E∗Lh(R) +MLh(R)) when Γ2 is linear

Γ1(E`(h) − E∗` (H) +M`(H)) + (1 +∑
ne
j=1 cj)Γ2(

ELh
(r)−E∗Lh

(R)+MLh
(R)

∑
ne
j=1 cj

) otherwise,

which completes the proof.

H Proof of realizable consistency for predictor-rejector two-stage surrogate
losses (Theorem 7)

Theorem 7 (Realizable (H,R)-consistency for predictor-rejector two-stage surrogates). As-
sume that H and R is closed under scaling and cj(x, y) = βj ,∀(x, y) ∈ X × Y. Let `1 and `2 be the
logistic loss. Let ĥ be the minimizer of E`1 and r̂ be the minimizer of ELĥ

. Then, the following holds
for any (H, R) -realizable distribution,

ELdef
(ĥ, r̂) = 0.

Proof. First, by definition, it is straightforward to see that for any h, r, x, y, Lh(r, x, y) upper bounds
the deferral loss Ldef . Consider a data distribution and costs under which there exists h∗ ∈ H and
r∗ ∈ R such that ELdef

(h∗, r∗) = 0.

Let ĥ be the minimizer of E`1 and r̂ the minimizer of ELĥ
Then, using the fact that Lh upper bounds

the deferral loss Ldef , we have ELdef
(ĥ, r̂) ≤ ELĥ

(r̂).

Next we analyze two cases. If for a point x, deferral occurs, that is there exists j∗ ∈ [ne], such
that r∗(x) = j∗, then we must have cj∗ = 0 for all x since the data is realizable and cj∗ is constant.
Therefore, there exists an optimal r∗∗ deferring all the points to the j∗th expert. Then, by the
assumption that R is closed under scaling and the Lebesgue dominated convergence theorem, for `2
being the logistic loss, ELdef

(ĥ, r̂) ≤ ELĥ
(r̂) ≤ limτ→+∞ ELĥ

(τr∗∗) = 0, where we used the fact that
in the limit of τ → +∞ the logistic loss term `2(r

∗∗, x, j) corresponding to j ≠ j∗ is zero.

On the other hand, if no deferral occurs for any point, that is r∗(x) = 0 for any x, then we must have
1h∗(x)≠y = 0 for all (x, y) since the data is realizable. Using the fact that H is closed under scaling
and that the logistic loss is realizable H-consistent in the standard classification, we obtain 1ĥ(x)≠y = 0

for all (x, y). Then, by the assumption that R is closed under scaling and the Lebesgue dominated
convergence theorem, for `2 being the logistic loss, ELdef

(ĥ, r̂) ≤ ELĥ
(r̂) ≤ limτ→+∞ ELĥ

(τr∗) = 0,
where we used the fact that in the limit of τ → +∞ the logistic loss term `2(r

∗, x, j) corresponding
to j ≠ 0 is zero.

Therefore, the optimal solution from minimizing predictor-rejector two-stage surrogates leads to a
zero error solution of the deferral loss, which proves that the predictor-rejector two-stage surrogate
loss is realizable consistent.
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